Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (5): 1341-1350    DOI: 10.11902/1005.4537.2024.389
Current Issue | Archive | Adv Search |
Effect of Mo Addition on Corrosion Behavior of EH36 Steel in Seawater Included With Sulfate Reduction Bacteria
GUO Zhangwei, YE Tingyu, GUO Na, LIU Tao()
Shanghai Maritime University, College of Ocean Science and Engineering, Shanghai 201306, China
Cite this article: 

GUO Zhangwei, YE Tingyu, GUO Na, LIU Tao. Effect of Mo Addition on Corrosion Behavior of EH36 Steel in Seawater Included With Sulfate Reduction Bacteria. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1341-1350.

Download:  HTML  PDF(15123KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In the design stage of marine engineering materials, it is easy to ignore the influence of microorganisms when the engineering facilities are in actual service. In fact, the alloying elements of the materials have a great impact on the adhesion of microorganisms and the corrosion performance of the materials. Herein, the effect of Mo addition on the corrosion behavior of EH36 marine steel in aged seawater included with sulfate reducing bacteria (SRB) is assessed via electrochemical measurement, optical microscope, scanning electron microscope and X-ray diffractometer etc. The results show that the introduction of Mo can accelerate the SRB induced corrosion of the EH36 steel, namely the thickness of the corrosion product scale of the Mo containing steel is 20 μm, while that of the steel without Mo is 13 μm, the corrosion increment of the former is as high as 40%; More pitting corrosion occurs on the surface of Mo containing steel. The relevant molecular mechanisms indicated that molybdenum could increase the expression of genes related to the adhesion and sulfate reduction processes in SRB biofilms. A denser biofilm and more hydrogen sulfide production accelerated material corrosion. Therefore, when designing materials in microbial environments, microbial factors should be fully considered.

Key words:  MIC      sulfate reducing bacteria      molybdenum      molecular mechanisms      RNA-seq     
Received:  29 November 2024      32134.14.1005.4537.2024.389
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China(51901127);National Natural Science Foundation of China(41976039);National Natural Science Foundation of China(42006039)
Corresponding Authors:  LIU Tao, E-mail: liutao@shmtu.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.389     OR     https://www.jcscp.org/EN/Y2025/V45/I5/1341

SteelCSiMnPSNbNCaMoFe
Cs0.050.21.5< 0.01< 0.0010.02< 0.0040.00250.0Bal.
Ms0.050.21.5< 0.01< 0.0010.02< 0.0040.00251.0Bal.
Table 1  Chemical compositions of the control steel (Cs) and molybdenum steel (Ms) (mass fraction / %)
Fig.1  Fluorescence microscopes of adhesions of SRB on Cs (a) and Ms (b)
Fig.2  SEM surface images of Cs (a) and Ms (b) after 14 d immersion in abiotic medium
Fig.3  SEM surface images of Cs (a) and Ms (b) after 14 d immersion in biotic medium
Fig.4  SEM cross-sectional images of Cs (a) and Ms (b) after 14 d immersion in biotic medium
Fig.5  XRD pattern of Cs (a) and Ms (b) after 14 d immersion in biotic medium containing D.vulgaris
Fig.6  EDS results of Cs (a) and Ms (b) after immersion in biotic medium for 14 d
Fig.7  2D (a, b) and 3D (c, d) images of pitting of Cs (a, c) and Ms (b, d) after immersion in abiotic medium for 14 d
Fig.8  2D (a, b) and 3D (c, d) images of pitting of Cs (a, c) and Ms (b, d) after immersion in biotic medium for 14 d
Fig.9  Size statistics of corrosion pits of Cs和Ms after 14 d immersion in abiotic medium and biotic medium
Fig.10  Corrosion rates of Ms and Cs in abiotic and biotic mediums
Fig.11  Nyquist plots of Ms (a, c) and Cs (b, d) in abiotic (a, b) and biotic (c, d) mediums, and equivalent circuit diagrams (e, f)
GroupRs / Ω·cm2Yf / S·s n ·cm-2nRfilm / Ω·cm2Ydl / S·s n ·cm-2nRct / Ω·cm2
Cs (1 d)60.796.8 × 10-50.93.6 × 1022.3 × 10-40.75.2 × 103
Cs (9 d)49.561.8 × 10-40.92.5 × 1048.4 × 10-50.92.2 × 104
Cs (14 d)56.028.0 × 10-512.4 × 1047.7 × 10-50.96.3 × 104
Ms (1 d)68.253.8 × 10-50.86.4 × 1034.5 × 10-50.92.4 × 104
Ms (9 d)69.9610.0 × 10-50.95.9 × 1031.4 × 10-30.52.9 × 102
Ms (14 d)68.141.1 × 10-40.81.7 × 1041.1 × 10-40.99.1 × 104
Table 2  Fitting parameters of EIS of Cs和Ms after immersion in the abiotic medium for different time
GroupRs / Ω·cm2Yf / S·s n ·cm-2nRfilm / Ω·cm2Ydl / S·s n ·cm-2nRct / Ω·cm2
Cs (1 d)60.203.1 × 10-50.649.23.6 × 10-50.82.9 × 104
Cs (9 d)65.701.3 × 10-30.49.7 × 1023.1× × 10-40.91.5 × 103
Cs (14 d)45.582.6 × 10-40.94.6 × 1033.4 × 10-50.593.1
Ms (1 d)64.501.7 × 10-40.923.22.9 × 10-40.98.2 × 103
Ms (9 d)59.951.1 × 10-30.617.73.4 × 10-40.91.6 × 104
Ms (14 d)61.083.1 × 10-40.722.32.0 × 10-40.96.0 × 104
Table 3  Fitting parameters of EIS of Cs和Ms after immersion in the biotic medium for different time
Fig.12  Schematic illustrations of molecular mechanism about the effect of Mo on the adhesion and corrosion of D.vulgaris on Ms: (a) gene diagram; (b) S2- synthesis related enzymes; (c) corrosion process
[1] Little B J, Lee J S. Microbiologically influenced corrosion: an update [J]. Int. Mater. Rev., 2014, 59: 384
[2] Qian H C, Zhang D W, Lou Y T, et al. Laboratory investigation of microbiologically influenced corrosion of Q235 carbon steel by halophilic archaea Natronorubrum tibetense [J]. Corros. Sci., 2018, 145: 151
[3] Li Z Y, Chang W W, Cui T Y, et al. Adaptive bidirectional extracellular electron transfer during accelerated microbiologically influenced corrosion of stainless steel [J]. Commun. Mater., 2021, 2: 67
[4] Satpathy S, Sen S K, Pattanaik S, et al. Review on bacterial biofilm: an universal cause of contamination [J]. Biocatal. Agric. Biotechnol., 2016, 7: 56
[5] Yazdi M, Khan F, Abbassi R. Microbiologically influenced corrosion (MIC) management using Bayesian inference [J]. Ocean Eng., 2021, 226: 108852
[6] Chen S Q, Zhang D. Study of corrosion behavior of copper in 3.5 wt.%NaCl solution containing extracellular polymeric substances of an aerotolerant sulphate-reducing bacteria [J]. Corros. Sci., 2018, 136: 275
[7] Yang J, Wang Z B, Qiao Y X, et al. Synergistic effects of deposits and sulfate reducing bacteria on the corrosion of carbon steel [J]. Corros. Sci., 2022, 199: 110210
[8] Chen Z Y, Dou W W, Chen S G, et al. Influence of nutrition on Cu corrosion by Desulfovibrio vulgaris in anaerobic environment [J]. Bioelectrochemistry, 2022, 144: 108040
[9] Liduino V, Galvão M, Brasil S, et al. SRB-mediated corrosion of marine submerged AISI 1020 steel under impressed current cathodic protection [J]. Colloid Surf., 2021, 202B: 111701
[10] Marja-Aho M, Rajala P, Huttunen-Saarivirta E, et al. Copper corrosion monitoring by electrical resistance probes in anoxic groundwater environment in the presence and absence of sulfate reducing bacteria [J]. Sensor. Actuat., 2018, 274A: 252
[11] Wang J L, Liu H F, Mohamed M E S, et al. Mitigation of sulfate reducing Desulfovibrio ferrophilus microbiologically influenced corrosion of X80 using THPS biocide enhanced by Peptide A [J]. J. Mater. Sci. Technol., 2022, 107: 43
[12] Hou B R, Li X G, Ma X M, et al. The cost of corrosion in China [J]. npj Mater. Degrad., 2017, 1: 4
[13] Anguita J, Pizarro G, Vargas I T. Mathematical modelling of microbial corrosion in carbon steel due to early-biofilm formation of sulfate-reducing bacteria via extracellular electron transfer [J]. Bioelectrochemistry, 2022, 145: 108058
[14] Xu L T, Guan F, Ma Y, et al. Inadequate dosing of THPS treatment increases microbially influenced corrosion of pipeline steel by inducing biofilm growth of Desulfovibrio hontreensis SY-21 [J]. Bioelectrochemistry, 2022, 145: 108048
[15] Xu D K, Li Y C, Gu T Y. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria [J]. Bioelectrochemistry, 2016, 110: 52
doi: 10.1016/j.bioelechem.2016.03.003 pmid: 27071053
[16] Dinh T H, Kuever J, Mußmann M, et al. Iron corrosion by novel anaerobic microorganisms [J]. Nature, 2004, 427: 829
[17] Deng X, Dohmae N, Kaksonen A H, et al. Inside Cover: biogenic iron sulfide nanoparticles to enable extracellular electron uptake in sulfate-reducing bacteria (Angew. Chem. Int. Ed. 15/2020) [J]. Angew. Chem. Int. Ed., 2020, 59: 5854
[18] Cheng L, Min D, Liu D F, et al. Sensing and approaching toxic arsenate by Shewanella putrefaciens CN-32 [J]. Environ. Sci. Technol., 2019, 53: 14604
[19] Liu L C, Liu G F, Zhou J T, et al. Energy taxis toward redox-active surfaces decreases the transport of electroactive bacteria in saturated porous media [J]. Environ. Sci. Technol., 2021, 55: 5559
[20] Chevance F F V, Hughes T K. Coordinating assembly of a bacterial macromolecular machine [J]. Nat. Rev. Microbiol., 2008, 6: 455
doi: 10.1038/nrmicro1887 pmid: 18483484
[21] Kong K F, Vuong C, Otto M. Staphylococcus quorum sensing in biofilm formation and infection [J]. Int. J. Med. Microbiol., 2006, 296: 133
[22] Emerenini O B, Eberl J H. Reactor scale modeling of quorum sensing induced biofilm dispersal [J]. Appl. Math. Comput., 2022, 418: 126792
[23] Zhao J L, Xu D K, Babar Shahzad M, et al. Effect of surface passivation on corrosion resistance and antibacterial properties of Cu-bearing 316L stainless steel [J]. Appl. Surf. Sci., 2016, 386: 371
[24] Lou Y T, Lin L, Xu D K, et al. Antibacterial ability of a novel Cu-bearing 2205 duplex stainless steel against Pseudomonas aeruginosa biofilm in artificial seawater [J]. Int. Biodeter. Biodegr., 2016, 110: 199
[25] Sun D, Xu D K, Yang C G, et al. An investigation of the antibacterial ability and cytotoxicity of a novel cu-bearing 317L stainless steel [J]. Sci. Rep., 2016, 6: 29244
doi: 10.1038/srep29244 pmid: 27385507
[26] Wang Y L, Guan F, Duan J Z, et al. Synergistic inhibition of rhamnolipid and 2,2-dibromo-3-hypoazopropionamide on microbiologically influenced corrosion of X80 pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1412
王娅利, 管 方, 段继周 等. 鼠李糖脂与2,2-二溴-3-次氮基丙酰胺协同抑制X80管线钢的微生物腐蚀 [J]. 中国腐蚀与防护学报, 2024, 44: 1412
doi: 10.11902/1005.4537.2024.051
[27] Tripathi A K, Thakur P, Saxena P, et al. Gene sets and mechanisms of sulfate-reducing bacteria biofilm formation and quorum sensing with impact on corrosion [J]. Front. Microbiol., 2021, 12: 754140
[28] Javed M A, Stoddart P R, Wade S A. Corrosion of carbon steel by sulphate reducing bacteria: initial attachment and the role of ferrous ions [J]. Corros. Sci., 2015, 93: 48
[29] Zhou L, Liu J, Dong F Q. Spectroscopic study on biological mackinawite (FeS) synthesized by ferric reducing bacteria (FRB) and sulfate reducing bacteria (SRB): Implications for in-situ remediation of acid mine drainage [J]. Spectrochim. Acta, 2017, 173A: 544
[30] Berg J S, Duverger A, Cordier L, et al. Rapid pyritization in the presence of a sulfur/sulfate-reducing bacterial consortium [J]. Sci. Rep., 2020, 10: 8264
doi: 10.1038/s41598-020-64990-6 pmid: 32427954
[31] Guo Z W, Wang W Q, Guo N, et al. Molybdenum-mediated chemotaxis of Pseudoalteromonas lipolytica enhances biofilm-induced mineralization on low alloy steel surface [J]. Corros. Sci., 2019, 159: 108123
[32] Guo Z W, Chai Z Y, Liu T, et al. Pseudomonas aeruginosa-accelerated corrosion of Mo-bearing low-alloy steel through molybdenum-mediating chemotaxis and motility [J]. Bioelectrochemistry, 2022, 144: 108047
[33] Childers S E, Ciufo S, Lovley D R. Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis [J]. Nature, 2002, 416: 767
[34] Friedlander R S, Vlamakis H, Kim P, et al. Bacterial flagella explore microscale hummocks and hollows to increase adhesion [J]. Proc. Natl. Acad. Sci. USA, 2013, 110: 5624
doi: 10.1073/pnas.1219662110 pmid: 23509269
[35] Hershey D M. Integrated control of surface adaptation by the bacterial flagellum [J]. Curr. Opin. Microbiol., 2021, 61: 1
doi: 10.1016/j.mib.2021.02.004 pmid: 33640633
[36] Ozer E, Yaniv K, Chetrit E, et al. An inside look at a biofilm: Pseudomonas aeruginosa flagella biotracking [J]. Sci. Adv., 2021, 7: eabg8581
[37] Liu X, Zhuo S Y, Jing X Y, et al. Flagella act as Geobacter biofilm scaffolds to stabilize biofilm and facilitate extracellular electron transfer [J]. Biosens. Bioelectron., 2019, 146: 111748
[38] Shimoyama T, Kato S, Ishii S, et al. Flagellum mediates symbiosis [J]. Science, 2009, 323: 1574
doi: 10.1126/science.1170086 pmid: 19299611
[39] Gorby Y A, Yanina S, McLean J S, et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms [J]. Proc. Natl. Acad. Sci. USA, 2009, 103: 11358
[40] Cheng L, Min D, Liu D F, et al. Deteriorated biofilm-forming capacity and electroactivity of Shewanella oneidnsis MR-1 induced by insertion sequence (IS) elements [J]. Biosens. Bioelectron., 2020, 156: 112136
[1] GUO Yujie, LI Yanhui, XIA Da-Hai, HU Wenbin. Data Analysis and Physical Model of Electrochemical Impedance Spectroscopy for Corrosion Systems: Progresses and Challenges[J]. 中国腐蚀与防护学报, 2025, 45(5): 1143-1160.
[2] TONG Xiangyu, XU Weichen, WANG Xiutong, WANG Youqiang, DUAN Jizhou. Summary on Effect of Weling Techniques on Microstructure and Mechanical Properties of TC4 Ti-alloy Weld Jointis[J]. 中国腐蚀与防护学报, 2025, 45(5): 1161-1174.
[3] LIU Penghe, XUE Lili, XU Likun, XIN Yonglei, GUO Mingshuai, ZHOU Shuai, DUAN Tigang. Effect of Hydrogen Pre-charging for Ti-substrate on Microstructure and Electrochemical Properties of Ti/RuO2-IrO2-TiO2 Anode[J]. 中国腐蚀与防护学报, 2025, 45(5): 1277-1288.
[4] XIA Da-Hai, PAN Chengcheng, GUO Yujie, HU Wenbin, TRIBOLLET Bernard. Electrochemical Impedance Spectroscopy Analysis on Interface State and Corrosion Mechanism of 7050 Al-alloy Subjected to Cavitation Erosion in NaCl Solution[J]. 中国腐蚀与防护学报, 2025, 45(5): 1196-1204.
[5] HE Jianghai, YANG Ziyu, LIU Qi, MA Zihua, HE Wei, CHEN Fei. Research Progress on Modification of Microarc Oxidation Coatings on Ti-alloy Surface by Adding Ceramic Particles to Electrolyte[J]. 中国腐蚀与防护学报, 2025, 45(5): 1175-1186.
[6] LUO Zhu, LIU Jiale, WEI Anchao, HUANG Honglin, LI Xin, YU Yanzhao, ZHANG Mengfei. Corrosion Behavior of Low Alloy Steel P110SS in Chloride and Formate Solutions at High Temperature and High CO2 Pressure[J]. 中国腐蚀与防护学报, 2025, 45(5): 1390-1398.
[7] GENG Haojun, XIE Fangkun, YANG Lingxu, WANG Yanli, LIU Huijun, ZENG Chaoliu. Preparation and Corrosion Behavior of (La0.2Nd0.2Tm0.2Yb0.2-Lu0.2)2Zr2O7 High Entropy Ceramic Beneath Deposits of Molten CaO-MgO-Al2O3-SiO2[J]. 中国腐蚀与防护学报, 2025, 45(5): 1244-1252.
[8] LI Ping, SHI Huijie, PEI Jibin, WANG Zijian, CAO Tieshan, CHENG Congqian, ZHAO Jie. Impact of Nanosecond Pulsed Laser Irradiation on Electrochemical Corrosion Behavior of 17-4PH Stainless Steel[J]. 中国腐蚀与防护学报, 2025, 45(5): 1417-1424.
[9] SHEN Zhiyuan, SHAN Guangbin, CHEN Mindong, LIU Yuanshuang. An Electrochemical Noise Signal Recognition Method for Corrosion Monitoring[J]. 中国腐蚀与防护学报, 2025, 45(5): 1433-1440.
[10] HE Wuhao, LIU Yang, YANG Siyi, ZHANG Shaodong, WU Wei, ZHANG Junxi. Effect of Sensitization Treatment on Electrochemical Behavior and Intergranular Corrosion of Conventional and Additively Manufactured 316L Stainless Steels[J]. 中国腐蚀与防护学报, 2025, 45(5): 1331-1340.
[11] GU Songlun, ZHANG Fan, HUANG Guosheng, JIANG Dan, DONG Guojun. Corrosion Behavior of Cold Spray Cu-Ti Pseudo Alloy as Anti-fouling Material in Natural Seawater[J]. 中国腐蚀与防护学报, 2025, 45(5): 1309-1319.
[12] YUE Rui, LIU Yongyong, YANG Lijing, ZHU Xinglong, CHEN Quanxin, A Naer, ZHANG Qingke, SONG Zhenlun. Effect of Laser Surface Remelting on Microstructure and Properties of Biodegradable Zn-0.4Mn Alloy[J]. 中国腐蚀与防护学报, 2025, 45(4): 1127-1134.
[13] ZHOU Qianyong, LAI Yang, LI Qian. Effect of Pickling Process on Corrosion Resistance of Double Cold-reduced Tinplate with Different Tin Coating Masses[J]. 中国腐蚀与防护学报, 2025, 45(4): 939-946.
[14] ZHANG Weizhi, FENG Siqiao, SONG Xiaopeng, LIU Aihua, TANG Dezhi, YAN Maocheng, HAN En-Hou. Microbial Corrosion of Polymer Flooding Oil Gathering/Transportation Pipeline[J]. 中国腐蚀与防护学报, 2025, 45(4): 1098-1106.
[15] XIA Yuan, LIAN Bingjie, CHENG Jia, LI Wen. Influence of Molecular Structure of Polyaspartic Ester Polyurea Amino Component on Microstructure of its Coating and Diffusion Behavior of Corrosive Media Within Coating: A Molecular Dynamics Simulation Study[J]. 中国腐蚀与防护学报, 2025, 45(4): 975-982.
No Suggested Reading articles found!