|
|
Initial Corrosion Behavior of Several Pure Irons and Steels in 3.5%NaCl Solution |
YANG Zhenyu1,2, JI Chao1,2, GUO Liya1,2( ), XU Run1,2, PENG Wei1,2, ZHAO Hongshan1,2, WEI Xicheng1,2, DONG Han1,2 |
1.School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China 2.Zhejiang Institute of Advanced Materials, Shanghai University, Jiaxing 314113, China |
|
Cite this article:
YANG Zhenyu, JI Chao, GUO Liya, XU Run, PENG Wei, ZHAO Hongshan, WEI Xicheng, DONG Han. Initial Corrosion Behavior of Several Pure Irons and Steels in 3.5%NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 469-478.
|
Abstract The initial corrosion behavior of three pure irons of different purity 3N2, 4N2 and 5N2, carbon steel Q235B, weathering steel SPA-H and stainless steel 304L in 3.5%NaCl solution was comparatively investigated by means of immersion test, electrochemical measurements, scanning electron microscopy, 3D profiling microscope and laser confocal Raman microscope. Results showed that according to the electrochemical impedance value, the corrosion rate of the six test materials from low to high is as following: 304L < 5N2 < 4N2 < 3N2 < SPA-H < Q235B. The scanning electron microscopy observation and 3D profiling microscope measurement revealed that the three pure irons 3N2, 4N2 and 5N2 exhibited localized corrosion; while the 3N2 presented the deepest corrosion pits. The corrosion products mainly consisted of Fe3O4, γ-FeOOH and α-FeOOH for all the six test materials.
|
Received: 14 October 2024
32134.14.1005.4537.2024.338
|
|
Fund: National Natural Science Foundation of China(42276214);National Natural Science Foundation of China(52201078);Shanghai Sailing Program(21YF1412800) |
Corresponding Authors:
GUO Liya, E-mail: liya_guo@shu.edu.cn
|
1 |
Ai Z Y, Sun W, Jiang J Y. Recent status of research on corrosion of low alloy corrosion resistant steel and analysis on existing eroblems [J]. Corros. Sci. Prot. Technol., 2015, 27: 525
|
|
艾志勇, 孙 伟, 蒋金洋. 低合金耐蚀钢筋锈蚀研究现状及存在的问题分析 [J]. 腐蚀科学与防护技术, 2015, 27: 525
doi: 10.11903/1002.6495.2014.407
|
2 |
Huang J Z, Huang T, Yang L J, et al. Electrochemical properties and offshore corrosion behavior of SAF 2304 duplex stainless steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 630
|
|
黄家针, 黄 涛, 杨丽景 等. SAF 2304双相不锈钢电化学性能及其近海腐蚀行为 [J]. 中国腐蚀与防护学报, 2023, 43: 630
doi: 10.11902/1005.4537.2022.217
|
3 |
Yu P P, Zhou X J, Mukhtar A, et al. Research status and prospect of high purity iron preparation [J]. China Metall., 2023, 33(6): 9
|
|
于盼盼, 周雪娇, Mukhtar A 等. 高纯铁制备的研究现状及展望 [J]. 中国冶金, 2023, 33(6): 9
|
4 |
Khan L, Sato K, Okuyama S, et al. Ultra-high-purity iron is a novel and very compatible biomaterial [J]. J. Mech. Behav. Biomed. Mater., 2020, 106: 103744
|
5 |
Yu Y C, Kang J, Feng L, et al. Pitting corrosion behavior and corrosion resistance of high strength seismic reinforcement rebar with trace rare earth [J]. J. Chin. Soc. Rare Earths, 2022, 40: 853
|
|
于彦冲, 康 健, 奉 亮 等. 稀土微合金化高强抗震钢筋点蚀行为及耐蚀性能研究 [J]. 中国稀土学报, 2022, 40: 853
|
6 |
Zhao Q C, Wang X F, Pan Z M, et al. Effects of rare earth elements addition on mechanical properties and corrosion behavior of GCr15 bearing steel under different heat treatment conditions [J]. Corros. Commun., 2023, 9: 65
|
7 |
Liu L H, Qi H B, Lu Y P, et al. A review on weathering steel research [J]. Corros. Sci. Prot. Technol., 2003, 15(2): 86
|
|
刘丽宏, 齐慧滨, 卢燕平 等. 耐大气腐蚀钢的研究概况 [J]. 腐蚀科学与防护技术, 2003, 15(2): 86
|
8 |
Xiao K, Dong C F, Li X G, et al. Study on accelerated corrosion tests for carbon steels and weathering steels [J]. Equip. Environ. Eng., 2007, 4(3): 5
|
|
肖 葵, 董超芳, 李晓刚 等. 碳钢和耐候钢加速腐蚀实验研究 [J]. 装备环境工程, 2007, 4(3): 5
|
9 |
Fajardo S, Bastidas D M, Criado M, et al. Electrochemical study on the corrosion behaviour of a new low-nickel stainless steel in carbonated alkaline solution in the presence of chlorides [J]. Electrochim. Acta, 2014, 129: 160
|
10 |
Wang J J, Chen R N, Hu H C, et al. Effect of Al on microstructure and weathering resistance of 4Cr1.5Ni weathering steel [J]. Iron Steel, 2023, 58(2): 126
|
|
王进建, 陈润农, 胡惠超 等. 铝对4Cr1.5Ni耐候钢组织和耐候性的影响 [J]. 钢铁, 2023, 58(2): 126
doi: 10.13228/j.boyuan.issn0449-749x.20220475
|
11 |
Zhou L J, Yang S W. Atmospheric corrosion of steels for marine engineering and development of weathering steels [J]. China Metall., 2022, 32(8): 7
|
|
周鲁军, 杨善武. 海洋工程用钢的大气腐蚀与耐候钢的发展 [J]. 中国冶金, 2022, 32(8): 7
|
12 |
Zhang X, Liu K, Zhu J, et al. Corrosion behaviors of weathering steel and carbon steel in vertical direction [J]. China Metall., 2023, 33(1): 81
|
|
张 旭, 刘 锟, 朱 嘉 等. 耐候钢和碳钢在竖直方向上的腐蚀行为 [J]. 中国冶金, 2023, 33(1): 81
|
13 |
Liu G Q, Zhang D F, Chen H X, et al. Electrochemical corrosion behavior of 2304 duplex stainless steel in a simulated pore solution in reinforced concrete serving in marine environment [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 204
|
|
刘国强, 张东方, 陈昊翔 等. 2304双相不锈钢钢筋在混凝土孔隙模拟液中的电化学腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 204
|
14 |
Wang J Y, Zhou X J, Wang H L, et al. Initial corrosion behavior of carbon steel and high strength steel in South China sea atmosphere [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 237
|
|
王靖羽, 周学杰, 王洪伦 等. 碳钢和高强钢在南海大气环境中的初期腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 237
|
15 |
Yang D H, Song Q C. Study on microstructure and mechanical properties of S355J2W weather resistance steel annealing with different processes [J]. Hot Work. Technol., 2013, 42(12): 235
|
|
杨德惠, 宋全超. S355J2W耐候钢不同退火工艺下的组织性能研究 [J]. 热加工工艺, 2013, 42(12): 235
|
16 |
Abiko K. Why do we study ultra-high purity base metals? [J]. Mater. Trans. JIM, 2000, 41: 233
|
17 |
Feng M R, Qiu J Z, Zhou X M, et al. Influence of flow on the corrosion behavior of pure iron in simulated geological repository conditions [J]. Surf. Interfaces, 2024, 46: 103998
|
18 |
Xu W C, Street S R, Amri M, et al. In-situ synchrotron studies of the effect of nitrate on iron artificial pits in chloride solutions: II. on the effect of carbon [J]. J. Electrochem. Soc., 2015, 162: C243
|
19 |
Xu W C, Street S R, Amri M, et al. In-situ synchrotron studies of the effect of nitrate on iron artificial pits in chloride solutions: I. On the structures of salt layers [J]. J. Electrochem. Soc., 2015, 162: C238
|
20 |
Xu W C, Yu F, Liu M. Influence of solid corrosion products in corrosion pits on growth of corrosion pits [J]. Mater. Prot., 2017, 50(11): 5
|
|
徐玮辰, 于 菲, 刘 敏. 钢铁点蚀坑内腐蚀产物对点蚀扩展的影响 [J]. 材料保护, 2017, 50(11): 5
|
21 |
Peng W, Gao X Q, Fan Z W, et al. Characteristics and high purification development of pure iron [J]. Iron Steel, 2021, 56(12): 109
|
|
彭 伟, 高新强, 范增为 等. 纯铁的特征及高纯化发展 [J]. 钢铁, 2021, 56(12): 109
|
22 |
Man C, Dong C F, Liang J X, et al. Characterization of the passive film and corrosion of martensitic AM355 stainless steel [J]. Anal. Lett., 2017, 50: 1091
|
23 |
Lei X W, Wang H Y, Wang N, et al. Passivity of martensitic stainless steel in borate buffer solution: Influence of sulfide ion [J]. Appl. Surf. Sci., 2019, 478: 255
|
24 |
Bolli E, Fava A, Ferro P, et al. Cr segregation and impact fracture in a martensitic stainless steel [J]. Coatings, 2020, 10: 843
|
25 |
Shi J J, Ming J, Wang D Q, et al. Improved corrosion resistance of a new 6%Cr steel in simulated concrete pore solution contaminated by chlorides [J]. Corros. Sci., 2020, 174: 108851
|
26 |
Li G, Evitts R, Boulfiza M. On the corrosion parameters acquired through potentiodynamic scans of carbon steel rebar in simulated pore solution and mortar [J]. Constr. Build. Mater., 2023, 409: 134160
|
27 |
Tang Y H, Li B, Ji P F, et al. Benefit of the rust layer formed on AlMn lightweight weathering steel in industrial atmosphere [J]. Constr. Build. Mater., 2023, 394: 132308
|
28 |
Chamritski I, Burns G. Infrared- and raman-active phonons of magnetite, maghemite, and hematite: A computer simulation and spectroscopic study [J]. J. Phys. Chem., 2005, 109B: 4965
|
29 |
Wang P X, Wang P J, Li Q, et al. Study of rust layer evolution in Q345 weathering steel utilizing electric resistance probes [J]. Corros. Sci., 2023, 225: 111595
|
30 |
Yang Y, Cheng X Q, Zhao J B, et al. A study of rust layer of low alloy structural steel containing 0.1%Sb in atmospheric environment of the Yellow Sea in China [J]. Corros. Sci., 2021, 188: 109549
|
31 |
Mi T W, Wang J J, McCague C, et al. Application of Raman Spectroscopy in the study of the corrosion of steel reinforcement in concrete: a critical review [J]. Cem. Concr. Compos., 2023, 143: 105231
|
32 |
Han J B, Young D, Colijn H, et al. Chemistry and structure of the passive film on mild steel in CO2 corrosion environments [J]. Ind. Eng. Chem. Res., 2009, 48: 6296
|
33 |
Zhang Y, Zhang X, Chen S Y, et al. Corrosion behavior and passive film properties of nickel-based alloy in phosphoric acid [J]. Corros. Commun., 2023, 9: 77
|
34 |
Hayden S C, Chisholm C, Grudt R O, et al. Localized corrosion of low-carbon steel at the nanoscale [J]. npj Mater. Degrad., 2019, 3: 17
|
35 |
Han Y L, Li J, Guo L Y, et al. Localized corrosion behavior induced by MnS inclusions in HRB400E rebar steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1255
|
|
韩宇龙, 李 健, 郭丽雅 等. 螺纹钢中MnS夹杂物诱发的局部腐蚀行为 [J]. 中国腐蚀与防护学报, 2024, 44: 1255
doi: 10.11902/1005.4537.2023.337
|
36 |
Sun Y T, Tan X, Lan R L, et al. Mechanisms of inclusion-induced pitting of stainless steels: a review [J]. J. Mater. Sci. Technol., 2024, 168: 143
|
37 |
Hu J Z, Ren Y, Zhang J, et al. Review on pitting corrosion of steel induced by MnS inclusions [J]. China Metall., 2022, 32(11): 18
|
|
胡锦榛, 任 英, 张 继 等. MnS夹杂物诱发钢材点蚀综述 [J]. 中国冶金, 2022, 32(11): 18
|
38 |
Ghods P, Burkan Isgor O, Bensebaa F, et al. Angle-resolved XPS study of carbon steel passivity and chloride-induced depassivation in simulated concrete pore solution [J]. Corros. Sci., 2012, 58: 159
|
39 |
Wang L W, Tian H Y, Gao H, et al. Electrochemical and XPS analytical investigation of the accelerative effect of bicarbonate/carbonate ions on AISI 304 in alkaline environment [J]. Appl. Surf. Sci., 2019, 492: 792
|
40 |
Ghods P, Isgor O B, Brown J R, et al. XPS depth profiling study on the passive oxide film of carbon steel in saturated calcium hydroxide solution and the effect of chloride on the film properties [J]. Appl. Surf. Sci., 2011, 257: 4669
|
41 |
Li S X, Hihara L H. The comparison of the corrosion of ultrapure iron and low-carbon steel under NaCl-electrolyte droplets [J]. Corros. Sci., 2016, 108: 200
|
42 |
Miyake K, Ohashi K, Komuro M. Ultrapure iron film formation by mass-separated ion beam deposition method [J]. MRS Online Proc. Library, 1992, 279: 787
|
43 |
Kiyoshi Miyake K M, Kenya Ohashi K O. Superior corrosion resistance of ion beam deposited iron film [J]. Jpn. J. Appl. Phys., 1993, 32: L120
|
44 |
Zhang T Y, Hao L J, Jiang Z H, et al. Investigation of rare earth (RE) on improving the corrosion resistance of Zr-Ti deoxidized low alloy steel in the simulated tropic marine atmospheric environment [J]. Corros. Sci., 2023, 221: 111335
|
45 |
Chen R N, Li Z D, Cao Y G, et al. Initial corrosion behavior and local corrosion origin of 9%Cr alloy steel in Cl- containing environment [J]. Acta Metall. Sin., 2023, 59: 926
|
|
陈润农, 李昭东, 曹燕光 等. 9%Cr合金钢在含Cl-环境中的初期腐蚀行为及局部腐蚀起源 [J]. 金属学报, 2023, 59: 926
doi: 10.11900/0412.1961.2021.00597
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|