Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (5): 1117-1124    DOI: 10.11902/1005.4537.2023.381
Current Issue | Archive | Adv Search |
Research Progress of Effect of Magnetic Field on Metal Corrosion
ZHU Liyang1,2, CHEN Junquan2, ZHANG Xinxin1, DONG Zehua1, CAI Guangyi2()
1 School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2 Nationa Key Laboratory of Electromagnetic Energy, Naval University of Engineering, Wuhan 430034, China
Cite this article: 

ZHU Liyang, CHEN Junquan, ZHANG Xinxin, DONG Zehua, CAI Guangyi. Research Progress of Effect of Magnetic Field on Metal Corrosion. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1117-1124.

Download:  HTML  PDF(6056KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

With more and more electromagnetic equipment was applied in corrosion environment, the effect of magnetic field on metal corrosion has become a factor that cannot be ignored. It has been found that the promotion or inhibition effect of magnetic field on metal corrosion depends on the specific working environment. It is generally believed that the magnetic field affects the electrochemical process of particle movement mainly through the Lorentz force and magnetic field gradient force, so that to affect the electrochemical corrosion process of metal, specifically in the corrosion of metal in the process of mass transfer, interfacial reaction and corrosion products of these three aspects. This paper summarizes the specific effects of the Lorentz force and magnetic field gradient force on the metal corrosion process in the presence of magnetic fields, and puts forward the direction of the future research and application of the influence of magnetic field on the corrosion process of metallic materials.

Key words:  magnetic field      metal corrosion      Lorentz force      magnetic field gradient force      electrochemistry     
Received:  29 November 2023      32134.14.1005.4537.2023.381
ZTFLH:  TG174  
Corresponding Authors:  CAI Guangyi, E-mail: cgy54@sina.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.381     OR     https://www.jcscp.org/EN/Y2024/V44/I5/1117

Influence factorResearch methodMain result
Magnitude and direction of magnetic fieldChemical soakingLorentz force accelerates mass transfer
Concentration and magnetism and of ionsElectrochemical techniquesThe magnetic gradient force affects the distribution of paramagnetic particles
Magnetism of metalSurface analysisThe magnetic field affects the corrosion behavior of metals by influencing the electrochemical reaction process
Table 1  Summary of the effects of magnetic field on the corrosion process of metals
Fig.1  XRD patterns of corrosion products formed on copper alloys after 1 a exposure in marine atmospheres with and without magnetic field[42]: (a) brass, (b) red copper, (c) bronze, (d) beryllium copper
Fig.2  Anodic polarization curves of Fe in 0.5 mol·L-1 H2SO4 solution in different magnetic fields[43-45]
Fig.3  Effects of applied magnetic field (B = 400 mT) and agitation on I-t curve at different potentials[46]: (a) 0.16 V, (b) 0.28 V, (c) 0.335 V, (d) 0.40 V
Fig.4  Schematic representation of the effect of magnetic field on artificial pitting pits on ferromagnetic electrodes[13]: (a) magnetic field is parallet to the pit surface, (b) magnetic field is perpendicular to the pit surface
Fig.5  SEM images of copper samples exposed for 36 h in the magnetic fields of 0 T (a) and 0.14 T (b)[48]
Fig.6  SEM images (a1, a2, b1, b2) and chemical compositions (a3, b3) of the corrosion products formed on beryllium copper after immersion in 1% (a) and 3.5% (b) NaCl solutions for 15 d in 0 T (a1, a2) and 0.4 T (b1, b2) magnetic fields
Fig.7  Changes of Nyquist (a), Bode (b) and Rs (c) values with magnetic field intensity in pre-treatment process[29]
1 Liu Y C, Xian H, Zhang C H, et al. Review on corrosion and surface treatment technology of metal materials [J]. Electron. Prod. Reliab. Environ. Test, 2023, 41(4): 7
刘妍岑, 鲜 行, 张从浩 等. 金属材料腐蚀及表面处理技术研究综述 [J]. 电子产品可靠性与环境试验, 2023, 41(4): 7
2 Hou B R. Corrosion cost and economic development [J]. Sci. Technol. Ind. China, 2020, (2): 21
侯保荣. 腐蚀成本与经济发展 [J]. 中国科技产业, 2020, (2): 21
3 Wu P P, Gao L X, Lyu Z P, et al. Research progress of carbon quantum dots in metal corrosion protection [J]. Corros. Prot., 2022, 43(11): 83
吴盼盼, 高立新, 吕战鹏 等. 碳量子点在金属腐蚀防护中的研究进展 [J]. 腐蚀与防护, 2022, 43(11): 83
4 Zhang P, Zhu Q, Su Q, et al. Corrosion behavior of T2 copper in 3.5% sodium chloride solution treated by rotating electromagnetic field [J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 1439
5 Zhang X, Wang Z H, Zhou Z H, et al. Impact of magnetic field on corrosion performance of Al-Mg alloy with different electrode potential phases [J]. Intermetallics, 2021, 129: 107037
6 Li J N, Zhang P, Guo B. Effects of rotating electromagnetic on flow corrosion of copper in seawater [J]. Trans. Nonferrous Met. Soc. China, 2011, 21: s489
7 Chiba A, Kawazu K, Nakano O, et al. The effects of magnetic fields on the corrosion of aluminum foil in sodium chloride solutions [J]. Corros. Sci., 1994, 36: 539
8 Ručinskien≐ A, Bikulčius G, Gudavičiūt≐ L, et al. Magnetic field effect on stainless steel corrosion in FeCl3 solution [J]. Electrochem. Commun., 2002, 4: 86
9 Jiang X, Qiao J L, Lo I M C, et al. Enhanced paramagnetic Cu2+ ions removal by coupling a weak magnetic field with zero valent iron [J]. J. Hazard. Mater., 2015, 283: 880
doi: 10.1016/j.jhazmat.2014.10.044 pmid: 25464332
10 Li H J, Xiong Q, Lu Z P, et al. A magnetic field induced undulated surface and the shift of the active/passivation transition threshold of iron in a sulfuric acid solution [J]. Corros. Sci., 2017, 129: 179
11 Li P F, Chen Y B, Huang H W, et al. Investigation of corrosion behavior of galvanized steel as submarine cable armor in seawater under weak magnetic fields [J]. Int. J. Electrochem. Sci., 2023, 18: 100264
12 Yang Y, Zhang Q B, Zhu W C, et al. Effect of magnetic field on corrosion behavior of X52 pipeline steel in NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 501
杨 永, 张庆保, 朱万成 等. 磁场对NaCl溶液中X52管线钢腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 501
13 Tang Y C, Davenport A J. Magnetic field effects on the corrosion of artificial pit electrodes and pits in thin films [J]. J. Electrochem. Soc., 2007, 154: C362
14 Zheng B J, Li K J, Liu H F, et al. Effects of magnetic fields on microbiologically influenced corrosion of 304 stainless steel [J]. Ind. Eng. Chem. Res., 2014, 53: 48
15 Zhang L, Hu P H, Zhou Q, et al. Effects of pulsed magnetic field on microstructure, mechanical properties and bio-corrosion behavior of Mg-7Zn alloy [J]. Mater. Lett., 2017, 193: 224
16 Leventis N, Dass A. Demonstration of the elusive concentration-gradient paramagnetic force [J]. J. Am. Chem. Soc., 2005, 127: 4988
pmid: 15810811
17 Zhu C Y, Miao L Y, Xie J H, et al. Magnetic field effects on the corrosion behavior of magnetocaloric alloys LaFe13.9Si1.4 under paramagnetic states [J]. J. Alloy. Compd., 2023, 968: 171901
18 Perov N S, Sheverdyaeva P M, Inoue M. Investigations of the magnetic field effect on electrochemical processes [J]. J. Magn. Magn. Mater., 2004, 272-276: 2448
19 Yuan B Y, Zhang J L, Gao G F, et al. Dynamic observation of the diffusion layer in anodic processes of the Fe/H2SO4 system with digital holography [J]. Electrochem. Commun., 2013, 27: 116
20 Ragsdale S R, Grant K M, White H S. Electrochemically generated magnetic forces. Enhanced transport of a paramagnetic redox species in large, nonuniform magnetic fields [J]. J. Am. Chem. Soc., 1998, 120: 13461
21 Aaboubi O, Chopart J P, Douglade J, et al. Magnetic field effects on mass transport [J]. J. Electrochem. Soc., 1990, 137: 1796
22 Li J X, Qin H J, Zhang W X, et al. Enhanced Cr(VI) removal by zero-valent iron coupled with weak magnetic field: role of magnetic gradient force [J]. Sep. Purif. Technol., 2017, 176: 40
23 Sueptitz R, Tschulik K, Uhlemann M, et al. Effect of magnetization state on the corrosion behaviour of NdFeB permanent magnets [J]. Corros. Sci., 2011, 53: 2843
24 Weier T, Eckert K, Mühlenhoff S, et al. Confinement of paramagnetic ions under magnetic field influence: lorentz versus concentration gradient force based explanations [J]. Electrochem. Commun., 2007, 9: 2479
25 Zhao S L. Magnetic field effects on the corrosion and stress corrosion cracking of Fe-Ga alloy [D]. Beijing: University of Science and Technology Beijing, 2021
赵素丽. 磁场作用下Fe-Ga合金腐蚀及应力腐蚀行为研究 [D]. 北京: 北京科技大学, 2021
26 Monzon L M A, Coey J M D. Magnetic fields in electrochemistry: the lorentz force. A mini-review [J]. Electrochem. Commun., 2014, 42: 38
27 Mühlenhoff S, Mutschke G, Koschichow D, et al. Lorentz-force-driven convection during copper magnetoelectrolysis in the presence of a supporting buoyancy force [J]. Electrochim. Acta, 2012, 69: 209
28 Sueptitz R, Tschulik K, Uhlemann M, et al. Magnetic field effects on the active dissolution of iron [J]. Electrochim. Acta, 2011, 56: 5866
29 Zhao S Z, Wang Y X, Zhao Y X, et al. The effect of magnetic field pretreatment on the corrosion behavior of carbon steel in static seawater [J]. RSC Adv., 2020, 10: 2060
doi: 10.1039/c9ra09079g pmid: 35494611
30 Sueptitz R, Tschulik K, Uhlemann M, et al. Retarding the corrosion of iron by inhomogeneous magnetic fields [J]. Mater. Corros., 2014, 65: 803
31 Zhao S L, You Z F, Zhang X W, et al. Magnetic field effects on the corrosion and electrochemical corrosion of Fe83Ga17 alloy [J]. Mater. Charact., 2021, 174: 110994
32 Lyu Z P, Huang D L, Yang W, et al. Effects of an applied magnetic field on the dissolution and passivation of iron in sulphuric acid [J]. Corros. Sci., 2003, 45: 2233
33 Sueptitz R, Koza J, Uhlemann M, et al. Magnetic field effect on the anodic behaviour of a ferromagnetic electrode in acidic solutions [J]. Electrochim. Acta, 2009, 54: 2229
34 Pullins M D, Grant K M, White H S. Microscale confinement of paramagnetic molecules in magnetic field gradients surrounding ferromagnetic microelectrodes [J]. J. Phys. Chem., 2001, 105B: 8989
35 Grant K M, Hemmert J W, White H S. Magnetic focusing of redox molecules at ferromagnetic microelectrodes [J]. Electrochem. Commun., 1999, 1: 319
36 Li X J. Study of effects of magnetic field on electrodissolution of metallic materials by the digital holography [D]. Xuzhou: Jiangsu Normal University, 2017
李希娇. 基于数字全息术研究磁场作用下金属的阳极溶解过程 [D]. 徐州: 江苏师范大学, 2017
37 Xu N. Corrosion behavior of oilfield sewage pipelines under magnetic field [D]. Xi’an: Northwestern Polytechnical University, 2005
徐 楠. 磁场作用下油田污水管线腐蚀行为的研究 [D]. 西安: 西北工业大学, 2005
38 Li T Y. Effect of magnetic field on the corrosion electrochemical behavior of dissimilar metals under different immersion states [D]. Qingdao: China University of Petroleum (East China), 2023
李同跃. 磁场对异种金属在不同浸没状态下的腐蚀电化学行为影响 [D]. 青岛: 中国石油大学(华东), 2023
39 Hinds G, Coey J M D, Lyons M E G. Magnetoelectrolysis of copper [J]. J. Appl. Phys., 1998, 83: 6447
40 Noninski V C. Magnetic field effect on copper electrodeposition in the Tafel potential region [J]. Electrochim. Acta, 1997, 42: 251
41 Wang C, Chen S H. Holographic microphotography study of periodic electrodissolution of iron in a magnetic field [J]. Electrochim. Acta, 1998, 43: 2225
42 Ren P Y, Li R X, Wu X. Corrosion behavior of copper materials in marine atmosphere under action of magnetic fiel [J]. Corros. Prot., 2019, 40: 419
任佩云, 李瑞雪, 吴 旭. 磁场作用下铜材在海洋大气中的腐蚀行为 [J]. 腐蚀与防护, 2019, 40: 419
43 Lyu Z P, Huang D L, Yang W. Probing into the effects of a magnetic field on the electrode processes of iron in sulphuric acid solutions with dichromate based on the fundamental electrochemistry kinetics [J]. Corros. Sci., 2005, 47: 1471
44 Lyu Z P, Yang W. In situ monitoring the effects of a magnetic field on the open-circuit corrosion states of iron in acidic and neutral solutions [J]. Corros. Sci., 2008, 50: 510
45 Lu Z P, Shoji T, Yang W. Anomalous surface morphology of iron generated after anodic dissolution under magnetic fields [J]. Corros. Sci., 2010, 52: 2680
46 Li L, Wang W J, Wang C, et al. Effects of an applied magnetic field on the anodic dissolution of nickel in HNO3+Cl- solution [J]. Electrochem. Commun., 2009, 11: 2109
47 Wang X P, Zhao J J, Hu Y P, et al. Effects of the Lorentz force and the gradient magnetic force on the anodic dissolution of nickel in HNO3+NaCl solution [J]. Electrochim. Acta, 2014, 117: 113
48 Yu X Y, Wang Z H, Lu Z H. Atmospheric corrosion behavior of copper under static magnetic field environment [J]. Mater. Lett., 2020, 266: 127472.
49 Busch K W, Busch M A, Parker D H, et al. Studies of a water treatment device that uses magnetic fields [J]. Corrosion, 1986, 42: 211
50 Ghabashy M A. Effect of magnetic field on the rate of steel corrosion in aqueous solutions [J]. Anti-Corros. Methods Mater., 1988, 35: 12
51 Huang L P, Zhang X, Xiong Y M, et al. Corrosion behavior of Al-3.0Mg- x RE/Fe alloys under magnetic field of different intensities [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 833
黄连鹏, 张 欣, 熊伊铭 等. 不同磁场强度下铝镁合金腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 833
doi: 10.11902/1005.4537.2021.247
52 Yang G H, Zhou Z H, Zhang X, et al. Influence of magnetic field on corrosion behavior of Al-Mg alloys with different Mg content [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 633
杨光恒, 周泽华, 张欣 等. 磁场作用下不同Mg含量Al-Mg合金腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 633
doi: 10.11902/1005.4537.2020.236
53 Zhao S L, Bai J J, You Z F, et al. Effect of a magnetic field on stress corrosion cracking of Fe83Ga17 alloy [J]. Corros. Sci., 2020, 167: 108539
54 Sato A, Ogiwara H, Miwa T, et al. Influence of high magnetic field on the corrosion of carbon steel [J]. IEEE Trans. Appl. Supercond, 2002, 12: 997
55 Li Y J, An B, Wang Y G, et al. Severe corrosion behavior of Fe78Si9B13 glassy alloy under magnetic field [J]. J. Non-Cryst. Solids, 2014, 392/393: 51
56 Hu J, Dong C F, Li X G, et al. Effects of applied magnetic field on corrosion of beryllium copper in NaCl solution [J]. J. Mater. Sci. Technol., 2010, 26(4): 355
[1] ZHANG Yani, WANG Simin, FAN Bing. Corrosion and Passivation Behavior of TC4 Ti-alloy in a Simulated Downhole Liquid in High-temperature and High-pressed O2 + CO2 Environment[J]. 中国腐蚀与防护学报, 2024, 44(6): 1518-1528.
[2] XIE Wenzhen, WANG Zhenyu, HAN En-Hou. Passivation Behavior of Corrosion Resistant Rebar Steels as Bare Steels in a Simulated Concrete Pore Fluid and as Rebar Steels Embedded in Concrete Made of Cement and Sea-sand in a Simulated Seawater[J]. 中国腐蚀与防护学报, 2024, 44(6): 1454-1464.
[3] FENG Shaoyu, ZHOU Zhaohui, YANG Lanlan, QIAO Yanxin, WANG Jinlong, WANG Fuhui. Electrochemical and Wear Behavior of TC4 Alloy in Marine Environment[J]. 中国腐蚀与防护学报, 2024, 44(5): 1243-1254.
[4] PENG Wenshan, XING Shaohua, QIAN Yao, LIN Cunguo, HOU Jian, ZHANG Dalei. Effect of Flowing Seawater on Corrosion Characteristics of Passivation Film on TA2 Pure-Ti Pipes[J]. 中国腐蚀与防护学报, 2024, 44(4): 1038-1046.
[5] XING Shaohua, PENG Wenshan, QIAN Yao, LI Xiangbo, MA Li, ZHANG Dalei. Effect of Seawater Flow Velocity on Pitting Corrosion of 2205 Stainless Steel with Different Surface Treatments[J]. 中国腐蚀与防护学报, 2024, 44(3): 658-668.
[6] DAI Wei, LIU Yuanyuan, TU Wenrui, SUN Yangting, LI Jin, JIANG Yiming. Corrosion Behavior of Ag/Sn Galvanic Couple at Applied Potential[J]. 中国腐蚀与防护学报, 2024, 44(3): 700-706.
[7] LI Xiaohui, TAO Yiqi, HUANG Hao, ZHANG Zhicheng, LI Entong, LYU Zhanpeng, CHEN Junjie. Effect of Magnetic Field on Anodic Processes of X70 Pipeline Steel in Sodium Carbonate Solution[J]. 中国腐蚀与防护学报, 2024, 44(3): 765-771.
[8] WANG Tongtong, ZHANG Juanrui, GAO Yun, GAO Rongjie. Preparation of Lotus Root-like TiO2 Nanotube Arrays in NH4F-(NH4)2SO4 Composite Electrolyte and Its Photogenerated Cathodic Protection Performance[J]. 中国腐蚀与防护学报, 2024, 44(2): 389-395.
[9] LI Wenjie, CHE Xiaoyu, TANG Yongcun, LIU Guangming, TIAN Wenming, HE Hualin, LIU Chenhui. Effect of Plastic Deformation Processing on Corrosion Behavior of Pure Zinc in a Leaching Solution of Soil at Tianjin[J]. 中国腐蚀与防护学报, 2024, 44(2): 497-504.
[10] DENG Zhibin, HU Xiao, LIU Yingyan, YUE Hang, ZHANG Qian, TANG Haiping, LU Rui. Effect of Magnetic Field on Corrosion Behavior of L360 Pipeline Steel and Welded Joints in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(2): 471-479.
[11] XIONG Yiming, MEI Wan, WANG Zehua, YU Rui, XU Shiyao, WU Lei, ZHANG Xin. Corrosion Behavior of 5083 Al-alloy under Magnetic Field[J]. 中国腐蚀与防护学报, 2024, 44(1): 229-236.
[12] ZHAO Guoxian, LIU Ranran, DING Langyong, ZHANG Siqi, GUO Menglong, WANG Yingchao. Effect of Temperature on CO2-inducedCorrosion Behavior of 5Cr Steel in a Simulated Oilfield Produced High-temperature and High-pressured Water[J]. 中国腐蚀与防护学报, 2024, 44(1): 175-186.
[13] WANG Pengjie, SONG Yuhao, FAN Lin, DENG Kuanhai, LI Zhonghui, MEI Zongbin, GUO Lei, LIN Yuanhua. Inhibition of Q235 Steel in 1 mol/L HCl Solution by a New Efficient Imidazolium Schiff Base Corrosion Inhibitor[J]. 中国腐蚀与防护学报, 2024, 44(1): 59-70.
[14] ZHANG Xinyi, LI Cong, WANG Yuxi, HUANG Mei, ZHU Huiping, LIU Fang, LIU Yang, NIU Fenglei. Research Progress on Liquid Metal Corrosion Behavior of Structural Steels for Lead Fast Reactor[J]. 中国腐蚀与防护学报, 2023, 43(6): 1216-1224.
[15] PAN Dailong, SI Xiaodong, LV Jinhong. Effect of Flow Velocity on Flow Accelerated Corrosion Rate of Carbon Steel Elbow[J]. 中国腐蚀与防护学报, 2023, 43(5): 1064-1070.
No Suggested Reading articles found!