|
|
Oxidation Behavior in Air-steam Mixed Atmosphere at 1000oC of Four Typical High-temperature Alloys for Gas Turbine |
LIANG Zhiyuan1( ), ZHANG Chao2, QU Jinyu2, HE Jianyuan2, GUO Tingshan1, XU Yiming1 |
1.School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China 2.National Engineering Research Center for Ship and Marine Special Equipment and Power Systems, No. 703 Research Institute of CSSC, Harbin 150078, China |
|
Cite this article:
LIANG Zhiyuan, ZHANG Chao, QU Jinyu, HE Jianyuan, GUO Tingshan, XU Yiming. Oxidation Behavior in Air-steam Mixed Atmosphere at 1000oC of Four Typical High-temperature Alloys for Gas Turbine. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 355-364.
|
Abstract The use of doped hydrogen or pure hydrogen as fuel poses a severe test to the key structural components of gas turbines, especially the resistance of materials to steam oxidation. The high-temperature steam oxidation behavior of 4 typical high temperature alloys, namely DD5, K447A, GH3230 and GH3536 for gas turbine in a mixed flow of air with 10% steam at 1000oC was studied by means of mass change measurement and thermodynamic theoretical calculation. It follows that the GH3230 and K447A alloys showed an oxidation mass gain and followed a parabolic law, while the alloys DD5 and GH3536 showed oxidation mass loss on the contrary. The oxidation products formed on K447A and GH3230 alloy were mainly layered Cr2O3 and Al2O3 scales. The spallation of Al2O3 oxide scales occurred on the surface of DD5 alloy, while oxide volatilization was found on GH3536 alloy. In sum, the steam oxidation resistance of the four alloys may be ranked as following: K447 > GH3230 > DD5 > GH3536.
|
Received: 11 April 2023
32134.14.1005.4537.2023.105
|
|
Fund: Innovative engineering(211-XXXX-N106-01-04);Independent Science and Technology Research and Development Special Project(202206Z);Major National Science and Technology Project(J2019-III-0012-0055) |
Corresponding Authors:
LIANG Zhiyuan, E-mail: liangzy@xjtu.edu.cn
|
1 |
Park Y, Choi M, Kim D, et al. Performance analysis of large-scale industrial gas turbine considering stable combustor operation using novel blended fuel[J]. Energy, 2021, 236: 121408
doi: 10.1016/j.energy.2021.121408
|
2 |
Funke H H W, Beckmann N, Abanteriba S. An overview on dry low NO x micromix combustor development for hydrogen-rich gas turbine applications[J]. Int. J. Hydrogen Energy, 2019, 44: 6978
doi: 10.1016/j.ijhydene.2019.01.161
|
3 |
Stefan E, Talic B, Larring Y, et al. Materials challenges in hydrogen-fuelled gas turbines[J]. Int. Mater. Rev., 2022, 67: 461
doi: 10.1080/09506608.2021.1981706
|
4 |
Holladay J D, Hu J, King D L, et al. An overview of hydrogen production technologies[J]. Catal. Today, 2009, 139: 244
doi: 10.1016/j.cattod.2008.08.039
|
5 |
Tian S Y, Zhu Z J, Jiang J, et al. Research and development status and the latest technological progress of hydrogen fuel gas turbine research[J]. Energy Res. Manag., 2021, (4): 10
|
|
田书耘, 朱志劼, 蒋 俊 等. 氢燃料燃气轮机研发现状和最新技术进展[J]. 能源研究与管理, 2021, (4): 10
|
6 |
Barelli L, Bidini G, Gallorini F, et al. Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: A review[J]. Energy, 2008, 33: 554
doi: 10.1016/j.energy.2007.10.018
|
7 |
Kraev V M, Tikhonov A I, Siluyanova M V. Development of gas turbines for power generation and gas transmission[J]. Russ. Eng. Res., 2020, 40: 759
doi: 10.3103/S1068798X20090075
|
8 |
Wee S, Do J, Kim K, et al. Review on mechanical thermal properties of superalloys and thermal barrier coating used in gas turbines[J]. Appl. Sci., 2020, 10: 5476
doi: 10.3390/app10165476
|
9 |
Yuan J T, Wu X M, Wang W, et al. Effect of grain size on oxidation of heat-resistant steels in high temperature water steam[J]. J. Chin. Soc. Corros. Prot., 2013, 33: 257
|
|
袁军涛, 吴细毛, 王 文 等. 晶粒尺寸对耐热钢在高温水蒸汽中的氧化行为的影响[J]. 中国腐蚀与防护学报, 2013, 33: 257
|
10 |
Shuai S S, Li S L, Xuan W D, et al. Research progress of materials and key manufacturing technologies of heavy-duty gas turbine blades[J]. Therm. Turbine, 2022, 51: 161
|
|
帅三三, 李石磊, 玄伟东 等. 重型燃气轮机涡轮叶片材料及制造技术研究进展[J]. 热力透平, 2022, 51: 161
|
11 |
Barwinska I, Kopec M, Kukla D, et al. Thermal barrier coatings for high-temperature performance of nickel-based superalloys: A synthetic review[J]. Coatings, 2023, 13: 769
doi: 10.3390/coatings13040769
|
12 |
Stefan E, Talic B, Larring Y, et al. Materials challenges in hydrogen-fuelled gas turbines[J]. Int. Mater. Rev., 2022, 67: 461
doi: 10.1080/09506608.2021.1981706
|
13 |
Ziaei-Asl A, Ramezanlou M T. Thermo-mechanical behavior of gas turbine blade equipped with cooling ducts and protective coating with different thicknesses[J]. Int. J. Mech. Sci., 2019, 150: 656
doi: 10.1016/j.ijmecsci.2018.10.070
|
14 |
Yu C T, Liu H, Zhang J, et al. Gradient thermal cycling behavior of a thermal barrier coating system constituted by NiCoCrAlY bond coat and pure metastable tetragonal nano-4YSZ top coat[J]. Ceram. Int., 2019, 45: 15281
doi: 10.1016/j.ceramint.2019.05.018
|
15 |
Saunders S R J, Monteiro M, Rizzo F. The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour: A review[J]. Prog. Mater. Sci., 2008, 53: 775
doi: 10.1016/j.pmatsci.2007.11.001
|
16 |
Meschter P J, Opila E J, Jacobson N S. Water vapor-mediated volatilization of high-temperature materials[J]. Ann. Rev. Mater. Res., 2013, 43: 559
doi: 10.1146/matsci.2013.43.issue-1
|
17 |
Liang Z Y, Xu Y M, Wang S, et al. Corrosion behavior of heat-resistant alloys in high temperature CO2 environment[J]. J. Chin. Soc. Corr. Prot., 2022, 42: 613
|
|
梁志远, 徐一鸣, 王硕 等. 高等级合金CO2环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42: 613
doi: 10.11902/1005.4537.2021.210
|
18 |
Oleksak R P, Tylczak J H, Carney C S, et al. High-temperature oxidation of commercial alloys in supercritical CO2 and related power cycle environments[J]. JOM, 2018, 70: 1527
doi: 10.1007/s11837-018-2952-7
|
19 |
Lee H J, Kim S H, Kim H, et al. Corrosion and carburization behavior of Al-rich surface layer on Ni-base alloy in supercritical-carbon dioxide environment[J]. Appl. Surf. Sci., 2016, 388: 483
doi: 10.1016/j.apsusc.2015.11.162
|
20 |
Fujikawa H, Murakumo T, Newcomb S, et al. Steam oxidation behaviour of Ni-based single crystalline superalloy for the advanced gas turbine[J]. Defect Diffus. Forum, 2007, 263: 111
doi: 10.4028/www.scientific.net/DDF.263
|
21 |
Wright I G, Dooley R B. A review of the oxidation behaviour of structural alloys in steam[J]. Int. Mater. Rev., 2010, 55: 129
doi: 10.1179/095066010X12646898728165
|
22 |
Liang Z Y, Zhao Q X. High temperature oxidation of Fe–Ni-base alloy HR120 and Ni-base alloy HAYNES 282 in steam[J]. Mater. High Temp., 2019, 36: 87
doi: 10.1080/09603409.2018.1465712
|
23 |
Liang Z Y, Wang Y G, Zhao Q X. Steam oxidation behavior of alloy 617 at 900oC to 1100oC[J]. Metall. Mater. Trans., 2018, 49A: 3133
|
24 |
Pint B A, Brese R G, Keiser J R. Effect of pressure on supercritical CO2 compatibility of structural alloys at 750oC[J]. Mater. Corros., 2017, 68: 151
|
25 |
Wang L, Liu C Y, Han Z Y, et al. Hot corrosion behavior and evaluation of turbine components and materials used for gas turbine engine[J]. J. Chin. Soc. Corros. Prot., 2011, 31: 399
|
|
王 理, 刘春阳, 韩振宇 等. 燃气轮机涡轮零部件及材料热腐蚀行为与评价方法研究[J]. 中国腐蚀与防护学报, 2011, 31: 399
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|