|
|
Present Status and Progress of Corrosion Protection for Microchannel Heat Exchangers of Al-alloy |
HE Jiaxuan1, ZHANG Yutong1, GUAN Xudong1, TANG Jianhua2, HUANG Hai2, ZHAO Xuhui1( ), TANG Yuming1( ), ZUO Yu1 |
1. Key Laboratory of Carbon Fiber and Functional Polymer, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China 2. Zhejiang Sanhua Intelligent Controls Co., Ltd., Hangzhou 310018, China |
|
Cite this article:
HE Jiaxuan, ZHANG Yutong, GUAN Xudong, TANG Jianhua, HUANG Hai, ZHAO Xuhui, TANG Yuming, ZUO Yu. Present Status and Progress of Corrosion Protection for Microchannel Heat Exchangers of Al-alloy. Journal of Chinese Society for Corrosion and protection, 2024, 44(4): 993-1000.
|
Abstract Microchannel heat exchangers of Al-alloy are the important component for air conditioner, of which the primary material is 3003 Al-alloy. In practical applications, the Al-alloy is suffered from corrosion and then results in the heat exchanger failure. This paper firstly introduces the corrosion problems existing in microchannel heat exchangers, then reviews the corrosion causes and influencing factors, such as coolants, micro-galvanic corrosion of the alloy and air pollutants etc., and summarizes corrosion control methods such as inhibitors and surface treatments. Finally elaborates some surface treatment techniques developed for 3003 Al-alloy, including electroless plating, anodizing, chemical conversion, sol-gel treatment etc., which probably provide references for the development and production of corrosion-resistant microchannel heat exchangers of 3003 Al-alloy.
|
Received: 08 August 2023
32134.14.1005.4537.2023.243
|
|
Corresponding Authors:
ZHAO Xuhui, E-mail: xhzhao@mail.buct.edu.cn;
|
[1] |
Tan Y L. Research progress of microchannel heat exchanger used in air conditioning [J]. Mech. Eng., 2018, (8): 95
|
|
谈玉龙. 微通道换热器在空调应用中的研究现状 [J]. 机械工程师, 2018, (8): 95
|
[2] |
Zhang Z B, Chen M, Zhang W T, et al. Thermodynamic, economic and environmental performance of a flute-type distributor embedded micro-channel evaporator for RACs [J]. Sustain. Energy Technol. Assess., 2022, 50: 101827
|
[3] |
Guía-Tello J C, Pech-Canul M A, Trujillo-Vázquez E, et al. Furnace brazing parameters optimized by taguchi method and corrosion behavior of tube-fin system of automotive condensers [J]. J. Mater. Eng. Perform., 2017, 26: 3901
|
[4] |
Peng C T, Wang L, Chen L, et al. Research on corrosion resistance of aluminum tube materials for air conditioning heat exchangers [J]. Refrig. Air Cond., 2020, 20(8): 29
|
|
彭楚堂, 王 琳, 陈 龙 等. 空调换热器铝管材料的抗腐蚀性研究 [J]. 制冷与空调, 2020, 20(8): 29
|
[5] |
Tuckerman D B, Pease R F W. High-performance heat sinking for VLSI [J]. IEEE Electr. Device Lett., 1981, 2(5): 126
|
[6] |
Zhou Z C. The applications of all-aluminum microchannel heat exchangers in air conditioning [J]. Refrigeration, 2014, 33(3): 44
|
|
周子成. 全铝微通道换热器在空调中的应用 [J]. 制冷, 2014, 33(3): 44
|
[7] |
Guía-Tello J C, Pech-Canul M I, Trujillo-Vázquez E, et al. Effect of brazing parameters on fillet size and microstructure of cladded fin-microchannel tube joints [J]. Trans. Nonferrous Met. Soc. China, 2020, 30: 3240
|
[8] |
Wang Y, Chen L Y, Xu D K, et al. Experimental study on electrochemical corrosion and salt-spray corrosion behavior of 3003 and 3102 aluminum alloys [J]. Chem. Eng. Mach., 2018, 45: 556
|
|
王 勇, 陈良源, 徐德奎 等. 3003和3102铝合金电化学和盐雾腐蚀性能实验研究 [J]. 化工机械, 2018, 45: 556
|
[9] |
Bajer J, Zaunschirm S, Plank B, et al. Kirkendall effect in twin-roll cast AA 3003 aluminum alloy [J]. Crystals, 2022, 12: 607
|
[10] |
Marshall G J, Bolingbroke R K, Gray A. Microstructural control in an aluminum core alloy for brazing sheet applications [J]. Metall. Trans., 1993, 24A: 1935
|
[11] |
Xia Y, Zhong Y, Hrnjak P S, et al. Frost, defrost, and refrost and its impact on the air-side thermal-hydraulic performance of louvered-fin, flat-tube heat exchangers [J]. Int. J. Refrig., 2006, 29: 1066
|
[12] |
Guo H, Sun J F, Ding X L, et al. The cause of cracking of the aluminum alloy tube in the automobile radiator [J]. Light Alloy Fabricat. Technol., 2016, 44(1): 33
|
|
郭 鹤, 孙继飞, 丁响雷 等. 汽车散热器铝合金管开裂原因 [J]. 轻合金加工技术, 2016, 44(1): 33
|
[13] |
Liu Z X, Wang L, Cao Y, et al. Comparative analysis on corrosion of finned-tube heat exchanger and micro-channel heat exchanger [J]. Refrig. Air Cond., 2015, 15(3): 30
|
|
刘志孝, 王 磊, 曹 勇 等. 翅片管式换热器与微通道换热器腐蚀对比分析 [J]. 制冷与空调, 2015, 15(3): 30
|
[14] |
Zhang P J, Dong W L, Wang L D, et al. Failure analysis of micro-channel condenser of air source heat pump water heater [J]. Eng. Fail. Anal., 2021, 122: 105250
|
[15] |
Ifezue D, Tobins F H. Corrosion failure of aluminum heat exchanger tubes [J]. J. Fail. Anal. Preven., 2015, 15: 541
|
[16] |
Faes W, Lecompte S, Ahmed Z Y, et al. Corrosion and corrosion prevention in heat exchangers [J]. Corros. Rev., 2019, 37: 131
doi: 10.1515/corrrev-2018-0054
|
[17] |
Chiba M, Nakayama Y, Hiraga T, et al. Corrosion of aluminum alloys in hot aqueous solutions and Dry/Wet-repeating atmospheres-effects of the concentration of Cl-, Cu2+, and dissolved O2, and of the addition of an inhibitor [J]. Corros. Eng., 2014, 63: 363
|
[18] |
Liu Y, Cheng Y F. Effects of coolant chemistry on corrosion of 3003 aluminum alloy in automotive cooling system [J]. Mater. Corros., 2010, 61: 574
|
[19] |
Zhang G A, Xu L Y, Cheng Y F. Mechanistic aspects of electrochemical corrosion of aluminum alloy in ethylene glycol–water solution [J]. Electrochim. Acta, 2008, 53: 8245
|
[20] |
Zuo H Y, Gong M, Zheng X W, et al. Corrosion behavior of 3A21 aluminum alloy in ethylene glycol solution under different atmospheres [J]. Mater. Res. Exp., 2020, 7: 026523
|
[21] |
Liu Y, Cheng Y F. Inhibiting effect of cerium ions on corrosion of 3003 aluminum alloy in ethylene glycol-water solutions [J]. J. Appl. Electrochem., 2011, 41: 383
|
[22] |
Salghi R, Bazzi L, Hammouti B, et al. Comparative study of the effect of inorganic ions on the corrosion of Al 3003 and 6063 in carbonate solution [J]. Prog. Org. Coat., 2004, 51: 113
|
[23] |
Yazdzad A R, Shahrabi T, Hosseini M G. Inhibition of 3003 aluminum alloy corrosion by propargyl alcohol and tartrate ion and their synergistic effects in 0.5% NaCl solution [J]. Mater. Chem. Phys., 2008, 109: 199
|
[24] |
Liu Y, Cheng Y F. Inhibition of corrosion of 3003 aluminum alloy in ethylene glycol-water solutions [J]. J. Mater. Eng. Perform., 2011, 20: 271
|
[25] |
El Ibrahimi B, Jmiai A, Somoue A, et al. Cysteine duality effect on the corrosion inhibition and acceleration of 3003 Aluminium alloy in a 2% NaCl Solution [J]. Port. Electrochim. Acta, 2018, 36: 403
|
[26] |
Pandya A, Saha D, Singh J K, et al. Effect of environmental pollution on corrosion characteristics of 3003 Aluminium Alloy exposed in different parts of India [J]. Trans. Indian Inst. Met., 2017, 70: 1607
|
[27] |
Peta K, Grochalski K, Piasecki A, et al. The influence of sodium chlorides fog on corrosion resistance of heat exchangers used in automotive [J]. Arch. Mech. Technol. Mater., 2017, 37(1): 45
|
[28] |
Sui M. Corrosion failure analysis and prevention of multiple micro-channel heat exchangers [J]. Refrig. Air Cond., 2014, 14(10): 65
|
|
眭 敏. 多元微通道换热器腐蚀失效分析及预防 [J]. 制冷与空调, 2014, 14(10): 65
|
[29] |
Scott A C, Woods R A, Harris J F. Accelerated corrosion test methods for evaluating external corrosion resistance of vacuum brazed aluminum heat exchangers [R]. SAE Transactions, 1991: 910590
|
[30] |
Li Y Y, Shen Y X, Li X P, et al. Interfacial microstructure and mechanical properties of vacuum brazed 3003 aluminum alloy honeycomb panel [J]. Weld. Join., 2021, (7): 23
|
|
李云月, 沈元勋, 李秀朋 等. 真空钎焊3003铝合金蜂窝板界面组织与性能 [J]. 焊接, 2021, (7): 23
|
[31] |
Wei W, Xu K H, Liang Y Y, et al. Study on long-term performance of microchannel heat exchanger with Zn-coated and Si-coated extruded tube [J]. J. Refrig., 2013, 34(4): 5
|
|
韦 伟, 徐坤豪, 梁媛媛 等. 采用表面喷锌及喷硅扁管的微通道换热器长效特性研究 [J]. 制冷学报, 2013, 34(4): 5
|
[32] |
Hymel P J, Guan D S, Mu Y, et al. Internal passivation of Al-based microchannel devices by electrochemical anodization [J]. J. Micromech. Microeng., 2015, 25: 027003
|
[33] |
Huang L Y, Liu Z L, Gou Y J, et al. Application study of new anti-frosting coating for fin and tube heat exchanger [J]. J. Refrig., 2008, 29(6): 1
|
|
黄玲艳, 刘中良, 勾昱君 等. 一种新型抑霜涂料在翅片管式换热器上的应用研究 [J]. 制冷学报, 2008, 29(6): 1
|
[34] |
Zhang X L, Wang Y C, Zhao D W, et al. Improved thermal performance of heat exchanger with TiO2 nanoparticles coated on the surfaces [J]. Appl. Therm. Eng., 2017, 112: 1153
|
[35] |
Afshar F N, Szala E, Wittebrood A, et al. Influence of material related parameters in Sea Water Acidified Accelerated Test, reliability analysis and electrochemical evaluation of the test for aluminum brazing sheet [J]. Corros. Sci., 2011, 53: 3923
|
[36] |
Luan B, Le T, Nagata J. An investigation on the coating of 3003 aluminum alloy [J]. Surf. Coat. Technol., 2004, 186: 431
|
[37] |
Yang H J, Gao Y M, Qin W C, et al. Microstructure and corrosion behavior of electroless Ni–P on sprayed Al–Ce coating of 3003 aluminum alloy [J]. Surf. Coat. Technol., 2015, 281: 176
|
[38] |
Yang H J, Gao Y M, Qin W C. Investigation of the corrosion behavior of Electroless Ni-P coating in flue gas condensate [J]. Coatings, 2017, 7(1): 16
|
[39] |
Du Y J, Sun Y, Shen L, et al. Effects of mild melt treatment on tin coatings [J]. Electroplat. Pollut. Control, 2005, 25(4): 6
|
|
杜轶君, 孙 勇, 沈黎 等. 软熔处理对锡镀层的影响 [J]. 电镀与环保, 2005, 25(4): 6
|
[40] |
Liu J M, Feng Q Y, Gao R A, et al. Current situation and "New" development of aluminum alloy anodizing system [J]. Mater. Prot., 2023, 56(7): 157
|
|
刘峻铭, 冯秋宇, 高瑞安 等. 铝合金阳极氧化体系的现状与“新”发展 [J]. 材料保护, 2023, 56(7): 157
|
[41] |
Hu Q, Gao J Y, Guo R S, et al. Long-term corrosion of lubricant infused surface with Micro-nano structures on anodized aluminum oxide [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 773
|
|
胡 倩, 高佳仪, 郭瑞生 等. 微纳结构对阳极氧化铝超滑表面长期耐蚀性的影响机制研究 [J]. 中国腐蚀与防护学报, 2023, 43: 773
|
[42] |
Zhang L, Fu G Y, Lu J Y, et al. Hard anodization of 3003 aluminum alloy in sulfuric acid at low temperature [J]. Electropat. Finish., 2018, 37(3): 113
|
|
张 丽, 付国燕, 陆江银 等. 3003铝合金低温硫酸硬质阳极氧化 [J]. 电镀与涂饰, 2018, 37(3): 113
|
[43] |
Cai J M, Guan L, Li Y. Effect of surface treatment on galvanic corrosion of 6061 Al-alloy and DC01 carbon steel [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 281
|
|
蔡建敏, 关 蕾, 李 雨. 不同表面防护处理的6016铝合金/DC01碳钢电偶腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 281
doi: 10.11902/1005.4537.2021.048
|
[44] |
Smit M A, Hunter J A, Sharman J D B, et al. Effect of organic additives on the performance of titanium-based conversion coatings [J]. Corros. Sci., 2003, 45: 1903
|
[45] |
Kim M M, Kapun B, Tiringer U, et al. Protection of aluminum alloy 3003 in sodium chloride and simulated acid rain solutions by commercial conversion coatings containing Zr and Cr [J]. Coatings, 2019, 9: 563
|
[46] |
Banczek E P, Moraes S R, Assis S L, et al. Effect of surface treatments based on self-assembling molecules and cerium coatings on the AA3003 alloy corrosion resistance [J]. Mater. Corros., 2013, 64: 199
|
[47] |
Danilidis I, Hunter J, Scamans G M, et al. Effect of silica nano-particles on the performance of manganese-based conversion treatments [J]. Corros. Sci., 2008, 50: 3038
|
[48] |
Yabuki A, Yamagami H, Noishiki K. Barrier and self-healing abilities of corrosion protective polymer coatings and metal powders for aluminum alloys [J]. Mater. Corros., 2007, 58: 497
|
[49] |
Berbel L O, Pinto Rodrigues P R, do Prado Banczek E. Aluminum coating obtained through the sol-gel method to protect metallic surfaces against corrosion [J]. Mater. Sci. Forum, 2014, 805: 190
|
[50] |
Niknahad M, Mannari V. Corrosion protection of aluminum alloy substrate with nano-silica reinforced organic-inorganic hybrid coatings [J]. J. Coat. Technol. Res., 2016, 13: 1035
|
[51] |
Zhou Q, He C L, Cai Q K, et al. Research progress in sol-gel technology applied in the surface treatment for aluminum alloy [J]. Mater. Rep., 2007, 21(12): 83
|
|
周 琦, 贺春林, 才庆魁 等. 溶胶-凝胶技术在铝合金表面处理中的研究进展 [J]. 材料导报, 2007, 21(12): 83
|
[52] |
Tussolini M, Ichikawa T, Gallina A L, et al. Electrochemical study of ceramics based on niobium oxide over aluminum alloy AA 3003 [J]. Mater. Sci. Forum, 2015, 820: 225
|
[53] |
Yaseen W K, Sanders S F, Almotawa R M, et al. Are metal complexes “Organic,” “Inorganic,” “Organometallic,” or “Metal-Organic” Materials? a case study for the use of Trinuclear coinage metal complexes as “Metal-Organic Coatings” for corrosion suppression on aluminum substrates [J]. Comment. Inorg. Chem., 2019, 39: 1
|
[54] |
Yaseen W K, Marpu S B, Golden T D, et al. Synthesis and evaluation of a novel fluorinated poly(hexafluoroisopropyl methacrylate) polymer coating for corrosion protection on aluminum alloy [J]. Surf. Coat. Technol., 2020, 404: 126444
|
[55] |
Coquery C, Carosio F, Negrell C, et al. New bio-based phosphorylated chitosan/alginate protective coatings on aluminum alloy obtained by the LbL technique [J]. Surf. Interf., 2019, 16: 59
|
[56] |
Zhou Y, Rossi B, Zhou Q X, et al. Thin plasma-polymerized coatings as a primer with polyurethane topcoat for improved corrosion resistance [J]. Langmuir, 2020, 36: 837
doi: 10.1021/acs.langmuir.9b02589
pmid: 31898908
|
[57] |
Kim C, Karayan A I, Milla J, et al. Smart coating embedded with pH-responsive Nanocapsules containing a corrosion inhibiting agent [J]. ACS Appl. Mater. Interf., 2020, 12: 6451
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|