Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (4): 987-992    DOI: 10.11902/1005.4537.2023.280
Current Issue | Archive | Adv Search |
Corrosion Behavior in Soil of Xinjiang of Steels for Photovoltaic Pile Foundation
WANG Gang1, LI Zhao1, WANG Tao2, DUAN Teng2, DU Cuiwei2()
1. TBEA Xinjiang SUNOASIS Co., Ltd., Urumqi 830011, China
2. Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

WANG Gang, LI Zhao, WANG Tao, DUAN Teng, DU Cuiwei. Corrosion Behavior in Soil of Xinjiang of Steels for Photovoltaic Pile Foundation. Journal of Chinese Society for Corrosion and protection, 2024, 44(4): 987-992.

Download:  HTML  PDF(14938KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Three kinds of steel used for photovoltaic pile foundation were buried in a selected site in Xinjiang area for 30 d, whilst the accelerated soil acceleration test was carried out in the laboratory for comparison in terms of their corrosion behavior. Then their corrosion morphology and corrosion products were characterized by means of scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), and the corrosion behavior of different photovoltaic pile steels in Xinjiang soil environment were compared by electrochemical tests. The results show that compared with the other two corrosion-resistant steels, the Q355B carbon steel suffers from the most serious corrosion. The corrosion products are mainly iron compounds composed of α-FeOOH and γ-FeOOH. The three steels exhibit the same corrosion acceleration ratio in the accelerated corrosion tests with the same parameters, and their corrosion mechanism is basically the same as that of the real field corrosion test.

Key words:  Q355B carbon steel      corrosion-resistant steel      soil corrosion      accelerated corrosion experiment      photovoltaic pile     
Received:  08 September 2023      32134.14.1005.4537.2023.280
ZTFLH:  TG172.4  
Corresponding Authors:  DU Cuiwei, E-mail: dcw@ustb.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.280     OR     https://www.jcscp.org/EN/Y2024/V44/I4/987

MaterialCMnSiPSNiCrCuMoFe
Q355B carbon steel0.1551.3300.2260.0270.012-0.014--98.236
Corrosion-resistant steel A0.0590.7550.2280.0110.0010.1860.8450.3700.08197.464
Corrosion-resistant steel B0.0680.7210.3190.0100.0020.0970.9350.2660.00897.574
Table 1  Chemical compositions of Q355B carbon steel, corrosion-resistant steel A and corrosion-resistant steel B
Fig.1  Potentiodynamic polarization curves of three kinds of photovoltaic steel for pile foundation in field soil (a) and comparison of Ecorr and Eb values (b)
Fig.2  Macroscopic corrosion morphologies of three kinds of photovoltaic pile steel after 30 d of field soil corrosion (a-c) and 10 d of accelerated corrosion test (d-f): (a, d) Q355B carbon steel, (b, e) corrosion-resistant steel A, (c, f) corrosion-resistant steel B
Fig.3  Morphologies of corrosion products of three kinds of photovoltaic pile steel after 30 d of field soil corrosion: (a, d) Q355B carbon steel, (b, e) corrosion-resistant steel A, (c, f) corrosion-resistant steel B
Fig.4  EDS results of corrosion products of three kinds of photovoltaic pile steel after 30 d of field soil corrosion: (a) Q355B carbon steel, (b) corrosion-resistant steel A, (c) corrosion-resistant steel B
Fig.5  XRD patterns of the corrosion products of three kinds of photovoltaic pile steel after 30 d of field soil corrosion (a) and 10 d of accelerated corrosion test (b)
Fig.6  Corrosion rates of three kinds of photovoltaic steel for pile foundation under the conditions of field soil corrosion and accelerated corrosion tests (a) and local enlarged diagram of Fig.6a (b)
[1] Cao S W, Zhou G Q, Cai Q L, et al. A review of solar cells: Materials, policy-driven mechanisms and application prospects [J]. Acta Mater. Compos. Sin., 2022, 39: 1847
曹邵文, 周国庆, 蔡琦琳 等. 太阳能电池综述: 材料、政策驱动机制及应用前景 [J]. 复合材料学报, 2022, 39: 1847
[2] Yan F J, Li X G, Jiang B, et al. Corrosion behavior of pure copper in alkaline soil [J]. Corros. Sci. Prot. Technol., 2019, 31: 155
闫风洁, 李辛庚, 姜 波 等. 纯铜在碱性土壤中的腐蚀行为 [J]. 腐蚀科学与防护技术, 2019, 31: 155
doi: 10.11903/1002.6495.2018.173
[3] Du H. Study on accelerated corrosion tests of Q235 steel in Dagang soil by electrolytic and galvanic methods [D]. Beijing: University of Science and Technology Beijing, 2008
杜 鹤. Q235碳钢在大港土壤中电解及电偶加速腐蚀试验研究 [D]. 北京: 北京科技大学, 2008
[4] Nie X H, Li X G, Li Y L, et al. Simulative and accelerative experimentation of carbon steel corrosion in soil [J]. J. Mater. Eng., 2012, 40(1): 59
聂向晖, 李晓刚, 李云龙 等. 碳钢的土壤腐蚀模拟加速实验 [J]. 材料工程, 2012, 40(1): 59
[5] Chen C, Gao X H, Chen H W, et al. Research on corrosion behavior of 60Si2Mn spring steel for high-speed rail spring bar [J]. Steel Roll., 2022, 39(6): 183
陈 晨, 高秀华, 陈红卫 等. 高铁弹条用60Si2Mn弹簧钢腐蚀行为研究 [J]. 轧钢, 2022, 39(6): 183
[6] Zhang Y, Zhang H Y, Yang S Y. Effect of chromium content change on corrosion resistance of chromium-manganese steel [J]. Corros. Prot., 2021, 42(5): 34
张 艳, 张浩宇, 杨诗雨. 铬含量变化对铬锰钢耐腐蚀性能的影响 [J]. 腐蚀与防护, 2021, 42(5): 34
[7] Sun M H. Corrosion resistance mechanism of Cr-Mo-Sn microalloyed low-alloy steel in tropical marine atmosphere [D]. Beijing: University of Science and Technology Beijing, 2022
孙美慧. Cr-Mo-Sn微合金化对热带海洋大气环境中低合金钢耐蚀性影响机理 [D]. 北京: 北京科技大学, 2022
[8] Zhu Y C, Liu G M, Liu X, et al. Investigation on interrelation of field corrosion test and accelerated corrosion test of grounding materials in red soil environment [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 550
朱亦晨, 刘光明, 刘 欣 等. 红壤地区接地材料现场埋样与加速腐蚀实验的相关性研究 [J]. 中国腐蚀与防护学报, 2019, 39: 550
doi: 10.11902/1005.4537.2018.172
[1] LI Wenjie, CHE Xiaoyu, TANG Yongcun, LIU Guangming, TIAN Wenming, HE Hualin, LIU Chenhui. Effect of Plastic Deformation Processing on Corrosion Behavior of Pure Zinc in a Leaching Solution of Soil at Tianjin[J]. 中国腐蚀与防护学报, 2024, 44(2): 497-504.
[2] BIAN Yafei, TANG Wenming, ZHANG Jie, MAO Ruirui, MIAO Chunhui, CHEN Guohong. Soil Corrosion Characteristics of Q235 Steel Grounding Material Used in Power Grid in Anhui Province[J]. 中国腐蚀与防护学报, 2024, 44(1): 130-140.
[3] GAO Yibin, DU Xiaogang, WANG Qiwei, ZHONG Liming, FU Wenhua, ZHANG Hanping, ZHANG Meng, JIANG Chunhai. Corrosion Behavior of Copper in a Simulated Grounding Condition in Electric Power Grid[J]. 中国腐蚀与防护学报, 2023, 43(2): 435-440.
[4] DING Cong, ZHANG Jinling, YU Yanchong, LI Yelei, WANG Shebin. Corrosion Kinetics of A572Gr.65 Steel in Different Simulated Soil Solutions[J]. 中国腐蚀与防护学报, 2022, 42(1): 149-155.
[5] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[6] ZHU Yichen,LIU Guangming,LIU Xin,PEI Feng,TIAN Xu,SHI Chao. Investigation on Interrelation of Field Corrosion Test and Accelerated Corrosion Test of Grounding Materials in Red Soil Environment[J]. 中国腐蚀与防护学报, 2019, 39(6): 550-556.
[7] Libao YU, Maocheng YAN, Binbin WANG, Yun SHU, Jin XU, Cheng SUN. Microbial Corrosion of Q235 Steel in Acidic Red Soil Environment[J]. 中国腐蚀与防护学报, 2018, 38(1): 10-17.
[8] Tao HUANG,Xiaoping CHEN,Xiangdong WANG,Fengyi MI,Rui LIU,Xiangyang LI. Effect of pH Value on Corrosion Behavior of Q235 Steel in an Artificial Soil[J]. 中国腐蚀与防护学报, 2016, 36(1): 31-38.
[9] YAO Huiping, YAN Maocheng, YANG Xu, SUN Cheng. Electrochemical Behavior of X80 Pipeline Steel in the Initial Stage of Corrosion in an Acidic Red Soil[J]. 中国腐蚀与防护学报, 2014, 34(5): 472-476.
[10] YANG Chao,,ZHANG Huixia,GUO Weimin,FU Yubin. Effects of H2O2 Addition on Corrosion Behavior of High-strength Low-alloy Steel in Seawater[J]. 中国腐蚀与防护学报, 2013, 33(3): 205-210.
[11] NIE Xianghui, LI Xiaogang, LI Yunlong, LI Jike, ZHANG Hongbo. ACCELERATION RATIOS AND DYNAMIC CORRELATION EXPERIMENTS ON THE CORROSION LOSS OF Q235 STEEL IN SEASHORE SOIL[J]. 中国腐蚀与防护学报, 2011, 31(3): 208-213.
[12] HUANG Jiayi QIU Yubing GUO Xingpeng. CLUSTER ANALYSIS OF ELECTROCHEMICAL NOISE FOR X70 STEEL IN KU'ERLE SOIL[J]. 中国腐蚀与防护学报, 2009, 29(6): 453-458.
[13] . REGULARITY OF VARIATION OF CORROSION OF Pb, Al, Cu WITH CLIMATE[J]. 中国腐蚀与防护学报, 2007, 27(6): 326-328 .
[14] ;. Research on Corrosive Mechanism of Lead-Tin Based Alloy Cultural Relics of Warring States in Hubei Province[J]. 中国腐蚀与防护学报, 2007, 27(3): 162-166 .
[15] rong wang. INVESTIGATIONS OF CORROSION SENSITIVITY IN TYPICAL SOIL ENVIRONMENTS OF SHAN-JING GAS PIPELINE[J]. 中国腐蚀与防护学报, 2006, 26(4): 211-215 .
No Suggested Reading articles found!