|
|
Oxidation Behavior of Three Different Ni-Cr Coatings in 630oC/25 MPa Supercritical Water |
YUAN Xiaohu1,2, LI Dingjun2, WANG Tianjian2, GUO Xianping2, ZHANG Naiqiang3, ZHU Zhongliang3( ) |
1.School of Materials Science and Engineering, Chongqing University, Chongqing 400044, China 2.State Key Laboratory of Long-Life High Temperature Materials, Dongfang Electric Corporation Dongfang Turbing Co., Ltd., Deyang 618000, China 3.Key Laboratory of Power Station Energy Transfer, Conversion and System, Ministry of Education, North China Electric Power University, Beijing 102206, China |
|
Cite this article:
YUAN Xiaohu, LI Dingjun, WANG Tianjian, GUO Xianping, ZHANG Naiqiang, ZHU Zhongliang. Oxidation Behavior of Three Different Ni-Cr Coatings in 630oC/25 MPa Supercritical Water. Journal of Chinese Society for Corrosion and protection, 2024, 44(1): 119-129.
|
Abstract Oxidation behavior of FB2 steel for steam turbine and FB2 steel coated with three different coatings was comparatively investigated in 630oC/25 MPa supercritical water (SCW). The three coatings are supersonic flame spraying Ni-Cr coating (SFS-NiCr), glass shot peened SFS-NiCr and emery belt grinded SFS-NiCr. Their oxidation mass change was intermittently measured by electron balance, while their microstructure and phase composition were characterized by means of SEM, XRD and XPS before and after oxidation test. Results show that the oxidation kinetics curve of FB2 material deviated from the parabola due to the spallation of the formed oxide scale during the oxidation process. The oxidation kinetics curves of coatings prepared by different processes seriously deviated also from the parabola. A double-layered oxide scale formed on FB2 steel, consisting of an Fe-rich outer Fe3O4, Fe2O3 and a Cr-rich inner oxide layer. The oxide scale formed on the three coatings are mainly composed of chromium-rich oxide. The phase composition of the oxide scales formed on FB2 steel and the three coatings changed with the increase of oxidation time. Finally, the oxidation mechanism of FB2 steel and three coatings in supercritical water was discussed.
|
Received: 21 February 2023
32134.14.1005.4537.2023.042
|
|
Fund: National Key R&D Project of China(2022YFB4100403) |
Corresponding Authors:
ZHU Zhongliang, E-mail: zhzl@ncepu.edu.cn
|
1 |
Zhai X, Hou M J, Yuan Y Q, et al. Key technology of 630oC coal-fired units with over 50% efficiency [J]. Dongfang Turbine, 2021, (4): 35
|
|
翟 璇, 侯明军, 袁永强 等. 超50%效率的630℃等级燃煤机组关键技术研究 [J]. 东方汽轮机, 2021, (4): 35
|
2 |
Lv Z J, Peng J Q, Ju H X, et al. Suggestions for R&D of high temperature rotor forging materials for ultra-supercritical steam turbine in China [J]. Dongfang Turbine, 2018, (4): 56
|
|
吕振家, 彭建强, 鞠红霞 等. 我国超超临界汽轮机高温转子锻件材料研发建议 [J]. 东方汽轮机, 2018, (4): 56
|
3 |
Bischoff J, Motta A T, Eichfeld C, et al. Corrosion of ferritic-martensitic steels in steam and supercritical water [J]. J. Nucl. Mater., 2013, 441: 604
doi: 10.1016/j.jnucmat.2012.09.037
|
4 |
Tan L, Ren X, Allen T R. Corrosion behavior of 9-12% Cr ferritic-martensitic steels in supercritical water [J]. Corros. Sci., 2010, 52: 1520
doi: 10.1016/j.corsci.2009.12.032
|
5 |
Yin K J, Qiu S Y, Tang R, et al. Corrosion behavior of ferritic/martensitic steel P92 in supercritical water [J]. J. Supercrit. Fluids, 2009, 50: 235
|
6 |
Ampornrat P, Was G S. Oxidation of ferritic-martensitic alloys T91, HCM12A and HT-9 in supercritical water [J]. J. Nucl. Mater., 2007, 371: 1
doi: 10.1016/j.jnucmat.2007.05.023
|
7 |
Ren X, Sridharan K, Allen T R. Corrosion of ferritic-martensitic steel HT9 in supercritical water [J]. J. Nucl. Mater., 2006, 358: 227
doi: 10.1016/j.jnucmat.2006.07.010
|
8 |
Zhu Z L, Xu H, Jiang D F, et al. Influence of temperature on the oxidation behaviour of a ferritic-martensitic steel in supercritical water [J]. Corros. Sci., 2016, 113: 172
doi: 10.1016/j.corsci.2016.10.020
|
9 |
Zhang N Q, Zhu Z L, Xu H, et al. Oxidation of ferritic and ferritic-martensitic steels in flowing and static supercritical water [J]. Corros. Sci., 2016, 103: 124
|
10 |
Gómez-Briceño D, Blázquez F, Sáez-Maderuelo A. Oxidation of austenitic and ferritic/martensitic alloys in supercritical water [J]. J. Supercrit. Fluids, 2013, 78: 103
doi: 10.1016/j.supflu.2013.03.014
|
11 |
Sun L, Yan W P. Calculation and analysis on oxidation rates of ferritic-martensitic steels in supercritical water [J]. J. Chin. Soc. Power Eng., 2018, 38: 156
|
|
孙 利, 阎维平. 超临界水工况下铁素体马氏体钢氧化速率常数的计算方法与分析 [J]. 动力工程学报, 2018, 38: 156
|
12 |
Xu H, Yuan J, Zhu Z L, et al. Oxidation behavior of ferritic-martensitic steel P92 exposed to supercritical water at 600oC/25 MPa [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 119
|
|
徐 鸿, 袁 军, 朱忠亮 等. 铁素体-马氏体P92钢在600oC/25MPa超临界水中的氧化特性 [J]. 中国腐蚀与防护学报, 2014, 34: 119
|
13 |
Ma Y H. Study on steam oxidation resistance of Al-based and Ni-Cr-based coatings [J]. J. Chin. Soc. Power Eng., 2019, 39: 504
|
|
马云海. Al基涂层和Ni-Cr基涂层抗蒸汽氧化性能研究 [J]. 动力工程学报, 2019, 39: 504
|
14 |
Ren X, Sridharan K, Allen T R. Corrosion of ferritic-martensitic steel HT9 in supercritical water [J]. J. Nucl. Mater., 2006, 358: 227
doi: 10.1016/j.jnucmat.2006.07.010
|
15 |
Chen Y, Sridharan K, Allen T. Corrosion behavior of ferritic-martensitic steel T91 in supercritical water [J]. Corros. Sci., 2006, 48: 2843
doi: 10.1016/j.corsci.2005.08.021
|
16 |
Zhu Z L, Xu H, Jiang D F, et al. Influence of temperature on the oxidation behaviour of a ferritic-martensitic steel in supercritical water [J]. Corros. Sci., 2016, 113: 172
|
17 |
Zhu Z L, Xu H, Jiang D F, et al. Temperature dependence of oxidation behaviour of a ferritic-martensitic steel in supercritical water at 600~700oC [J]. Oxid. Met., 2016, 86: 483
doi: 10.1007/s11085-016-9647-7
|
18 |
Zhang N Q, Zhu Z L, Xu H, et al. Oxidation of ferritic and ferritic-martensitic steels in flowing and static supercritical water [J]. Corros. Sci., 2016, 103: 124
doi: 10.1016/j.corsci.2015.10.017
|
19 |
Zhang N Q, Xu H, Li B R, et al. Influence of the dissolved oxygen content on corrosion of the ferritic-martensitic steel P92 in supercritical water [J]. Corros. Sci., 2012, 56: 123
doi: 10.1016/j.corsci.2011.11.013
|
20 |
Tan L, Ren X, Allen T R. Corrosion behavior of 9-12% Cr ferritic-martensitic steels in supercritical water [J]. Corros. Sci., 2010, 52: 1520
|
21 |
Bischoff J, Motta A T, Eichfeld C, et al. Corrosion of ferritic-martensitic steels in steam and supercritical water [J]. J. Nucl. Mater., 2013, 441: 604
doi: 10.1016/j.jnucmat.2012.09.037
|
22 |
Birks N, Meier G H, Pettit F S. Introduction to the High Temperature Oxidation of Metals [M]. Cambridge: Cambridge University Press, 2006
|
23 |
Sennour M, Marchetti L, Martin F, et al. A detailed TEM and SEM study of Ni-base alloys oxide scales formed in primary conditions of pressurized water reactor [J]. J. Nucl. Mater., 2010, 402: 147
doi: 10.1016/j.jnucmat.2010.05.010
|
24 |
Tawancy H M, Ul-Hamid A, Abbas N M. Practical Engineering Failure Analysis [M]. New York: Marcel Dekker, 2004: 381
|
25 |
Zhong X Y, Han E H, Wu X Q. Corrosion behavior of alloy 690 in aerated supercritical water [J]. Corros. Sci., 2013, 66: 369
doi: 10.1016/j.corsci.2012.10.001
|
26 |
Zhang Q, Tang R, Yin K J, et al. Corrosion behavior of Hastelloy C-276 in supercritical water [J]. Corros. Sci., 2009, 51: 2092
doi: 10.1016/j.corsci.2009.05.041
|
27 |
Zhu Z L, Ma C H, Li Y Y, et al. Oxidation behavior of Nickel-based alloy Inconel617B in supercritical water at 700oC [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 655
|
|
朱忠亮, 马辰昊, 李宇旸 等. 镍基合金Inconel617B在700℃超临界水环境中的氧化行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 655
doi: 10.11902/1005.4537.2021.145
|
28 |
He N K, Wang Y X, Zhou S G, et al. Oxidation behavior in water vapor and tribological property in atmosphere with 60% relative humidity at 580oC for Inconel 718 alloy [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 271
|
|
贺南开, 王永欣, 周升国 等. Inconel 718合金在580℃下水蒸气环境中的氧化行为及摩擦学性能 [J]. 中国腐蚀与防护学报, 2023, 43: 271
doi: 10.11902/1005.4537.2022.069
|
29 |
Wagner C. Theoretical analysis of the diffusion processes determining the oxidation rate of alloys [J]. J. Electrochem. Soc., 1952, 99: 369
doi: 10.1149/1.2779605
|
30 |
Viswanathan R. Advances in materials technology for fossil power plants [M]. marco island, florida, USA: ASM International, 2008
|
31 |
Dong Z Q, Liu Z, Li M, et al. Effect of ultrasonic impact peening on the corrosion of ferritic-martensitic steels in supercritical water [J]. J. Nucl. Mater., 2015, 457: 266
doi: 10.1016/j.jnucmat.2014.11.028
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|