Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (1): 119-129    DOI: 10.11902/1005.4537.2023.042
Current Issue | Archive | Adv Search |
Oxidation Behavior of Three Different Ni-Cr Coatings in 630oC/25 MPa Supercritical Water
YUAN Xiaohu1,2, LI Dingjun2, WANG Tianjian2, GUO Xianping2, ZHANG Naiqiang3, ZHU Zhongliang3()
1.School of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
2.State Key Laboratory of Long-Life High Temperature Materials, Dongfang Electric Corporation Dongfang Turbing Co., Ltd., Deyang 618000, China
3.Key Laboratory of Power Station Energy Transfer, Conversion and System, Ministry of Education, North China Electric Power University, Beijing 102206, China
Cite this article: 

YUAN Xiaohu, LI Dingjun, WANG Tianjian, GUO Xianping, ZHANG Naiqiang, ZHU Zhongliang. Oxidation Behavior of Three Different Ni-Cr Coatings in 630oC/25 MPa Supercritical Water. Journal of Chinese Society for Corrosion and protection, 2024, 44(1): 119-129.

Download:  HTML  PDF(25855KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Oxidation behavior of FB2 steel for steam turbine and FB2 steel coated with three different coatings was comparatively investigated in 630oC/25 MPa supercritical water (SCW). The three coatings are supersonic flame spraying Ni-Cr coating (SFS-NiCr), glass shot peened SFS-NiCr and emery belt grinded SFS-NiCr. Their oxidation mass change was intermittently measured by electron balance, while their microstructure and phase composition were characterized by means of SEM, XRD and XPS before and after oxidation test. Results show that the oxidation kinetics curve of FB2 material deviated from the parabola due to the spallation of the formed oxide scale during the oxidation process. The oxidation kinetics curves of coatings prepared by different processes seriously deviated also from the parabola. A double-layered oxide scale formed on FB2 steel, consisting of an Fe-rich outer Fe3O4, Fe2O3 and a Cr-rich inner oxide layer. The oxide scale formed on the three coatings are mainly composed of chromium-rich oxide. The phase composition of the oxide scales formed on FB2 steel and the three coatings changed with the increase of oxidation time. Finally, the oxidation mechanism of FB2 steel and three coatings in supercritical water was discussed.

Key words:  coating      oxidation      supercritical water      oxidation mechanism      oxide film     
Received:  21 February 2023      32134.14.1005.4537.2023.042
ZTFLH:  TK245  
Fund: National Key R&D Project of China(2022YFB4100403)
Corresponding Authors:  ZHU Zhongliang, E-mail: zhzl@ncepu.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.042     OR     https://www.jcscp.org/EN/Y2024/V44/I1/119

Fig.1  Mass gains of FB2 steel (a) and three sprayed coatings with different treatments (b) during exposure in SCW at 630oC
Fig.2  Surface morphologies of sprayed coatings treated by shot peening (a) and grinding (b)
Fig.3  Surface morphologies of FB2 steel (a1-a3) and sprayed coatings untreated (b1-b3) and treated by shot peening (c1-c3) and grinding (d1-d3) after exposure in 630oC/25 MPa SCW for 100 h (a1-d1), 1000 h (a2-d2) and 3000 h (a3-d3)
Fig.4  Surface morphologies of FB2 steel (a, b) and Ni-Cr thermally sprayed coatings untreated (c, d) and treated by shot peening (e, f) and grinding (g, h) after exposure in 630℃/25 MPa SCW for 100 h
SampleLocationOCrNiFe
FB2121.4//78.6
247.5//52.5
As-sprayed coating142.918.139/
254.71728.2/
Shot peening treated coating169.117.613.3/
253.621.725.6/
Grinding treated coating153.223.523.3/
247.922.429.7/
Table 1  Elements content of oxide scale formed on FB2 substrate and Ni-Cr Coating with different treatment processes after oxidation for 100 h
Fig.5  Surface morphologies of FB2 steel (a, b) and Ni-Cr thermally sprayed coatings untreated (c, d) and treated by shot peening (e, f) and grinding (g, h) after exposure in 630oC/25 MPa SCW for 1000 h
Fig.6  Surface morphologies of the spallation zones of the oxide scale formed on FB2 steel exposed in 630oC/25 MPa SCW for 3000 h: (a) low-magnification view, (b) high-magnification view of location 1, (c) low-magnification view, (d) high-magnification view of location 2, (e) high-magnification view of location 3, (f) high-magnification view of location 4
Fig.7  Surface morphologies of sprayed Ni-Cr coatings untreated (a, b) and treated by shot peening (c, d) and grinding (e, f) after exposure in 630oC/25 MPa SCW for 3000 h
SampleLocationOCrNi
As-sprayed coating163.82313.2
263.517.419.1
Shot peening treated coating17226.71.3
246.419.334.3
Grinding treated coating169.921.98.2
25720.922.2
Table 2  The contents of EDS detected elements in marked points in Fig.7
Fig.8  XRD patterns of FB2 steel (a) and Ni-Cr coatings untreated (b) and treated by shot peening (c) and grinding (d) after exposure in 630oC SCW for 100 and 3000 h
Fig.9  XPS spectra of the surfaces of FB2 steel after oxidation in SCW at 630oC for 3000 h: (a) Fe 2p, (b) O 1s
Fig.10  XPS spectra of the surfaces of three Ni-Cr coatings after oxidation in SCW at 630oC for 3000 h: (a) general spectrum, (b) Ni 2p, (c) Cr 2p, (d) O 1s
Fig.11  Cross-sectional morphologies (a1-d1) and corresponding elemental depth profiles (a2-d2) of FB2 alloy (a1, a2) and thermally sprayed Ni-Cr coatings untreated (b1, b2) and treated by shot peening (c1, c2) and grinding (d1, d2) after exposure in SCW at 630oC for 3000 h
Fig.12  Equilibrium oxygen partial pressures of Fe and Cr oxides at different temperatures
1 Zhai X, Hou M J, Yuan Y Q, et al. Key technology of 630oC coal-fired units with over 50% efficiency [J]. Dongfang Turbine, 2021, (4): 35
翟 璇, 侯明军, 袁永强 等. 超50%效率的630℃等级燃煤机组关键技术研究 [J]. 东方汽轮机, 2021, (4): 35
2 Lv Z J, Peng J Q, Ju H X, et al. Suggestions for R&D of high temperature rotor forging materials for ultra-supercritical steam turbine in China [J]. Dongfang Turbine, 2018, (4): 56
吕振家, 彭建强, 鞠红霞 等. 我国超超临界汽轮机高温转子锻件材料研发建议 [J]. 东方汽轮机, 2018, (4): 56
3 Bischoff J, Motta A T, Eichfeld C, et al. Corrosion of ferritic-martensitic steels in steam and supercritical water [J]. J. Nucl. Mater., 2013, 441: 604
doi: 10.1016/j.jnucmat.2012.09.037
4 Tan L, Ren X, Allen T R. Corrosion behavior of 9-12% Cr ferritic-martensitic steels in supercritical water [J]. Corros. Sci., 2010, 52: 1520
doi: 10.1016/j.corsci.2009.12.032
5 Yin K J, Qiu S Y, Tang R, et al. Corrosion behavior of ferritic/martensitic steel P92 in supercritical water [J]. J. Supercrit. Fluids, 2009, 50: 235
6 Ampornrat P, Was G S. Oxidation of ferritic-martensitic alloys T91, HCM12A and HT-9 in supercritical water [J]. J. Nucl. Mater., 2007, 371: 1
doi: 10.1016/j.jnucmat.2007.05.023
7 Ren X, Sridharan K, Allen T R. Corrosion of ferritic-martensitic steel HT9 in supercritical water [J]. J. Nucl. Mater., 2006, 358: 227
doi: 10.1016/j.jnucmat.2006.07.010
8 Zhu Z L, Xu H, Jiang D F, et al. Influence of temperature on the oxidation behaviour of a ferritic-martensitic steel in supercritical water [J]. Corros. Sci., 2016, 113: 172
doi: 10.1016/j.corsci.2016.10.020
9 Zhang N Q, Zhu Z L, Xu H, et al. Oxidation of ferritic and ferritic-martensitic steels in flowing and static supercritical water [J]. Corros. Sci., 2016, 103: 124
10 Gómez-Briceño D, Blázquez F, Sáez-Maderuelo A. Oxidation of austenitic and ferritic/martensitic alloys in supercritical water [J]. J. Supercrit. Fluids, 2013, 78: 103
doi: 10.1016/j.supflu.2013.03.014
11 Sun L, Yan W P. Calculation and analysis on oxidation rates of ferritic-martensitic steels in supercritical water [J]. J. Chin. Soc. Power Eng., 2018, 38: 156
孙 利, 阎维平. 超临界水工况下铁素体马氏体钢氧化速率常数的计算方法与分析 [J]. 动力工程学报, 2018, 38: 156
12 Xu H, Yuan J, Zhu Z L, et al. Oxidation behavior of ferritic-martensitic steel P92 exposed to supercritical water at 600oC/25 MPa [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 119
徐 鸿, 袁 军, 朱忠亮 等. 铁素体-马氏体P92钢在600oC/25MPa超临界水中的氧化特性 [J]. 中国腐蚀与防护学报, 2014, 34: 119
13 Ma Y H. Study on steam oxidation resistance of Al-based and Ni-Cr-based coatings [J]. J. Chin. Soc. Power Eng., 2019, 39: 504
马云海. Al基涂层和Ni-Cr基涂层抗蒸汽氧化性能研究 [J]. 动力工程学报, 2019, 39: 504
14 Ren X, Sridharan K, Allen T R. Corrosion of ferritic-martensitic steel HT9 in supercritical water [J]. J. Nucl. Mater., 2006, 358: 227
doi: 10.1016/j.jnucmat.2006.07.010
15 Chen Y, Sridharan K, Allen T. Corrosion behavior of ferritic-martensitic steel T91 in supercritical water [J]. Corros. Sci., 2006, 48: 2843
doi: 10.1016/j.corsci.2005.08.021
16 Zhu Z L, Xu H, Jiang D F, et al. Influence of temperature on the oxidation behaviour of a ferritic-martensitic steel in supercritical water [J]. Corros. Sci., 2016, 113: 172
17 Zhu Z L, Xu H, Jiang D F, et al. Temperature dependence of oxidation behaviour of a ferritic-martensitic steel in supercritical water at 600~700oC [J]. Oxid. Met., 2016, 86: 483
doi: 10.1007/s11085-016-9647-7
18 Zhang N Q, Zhu Z L, Xu H, et al. Oxidation of ferritic and ferritic-martensitic steels in flowing and static supercritical water [J]. Corros. Sci., 2016, 103: 124
doi: 10.1016/j.corsci.2015.10.017
19 Zhang N Q, Xu H, Li B R, et al. Influence of the dissolved oxygen content on corrosion of the ferritic-martensitic steel P92 in supercritical water [J]. Corros. Sci., 2012, 56: 123
doi: 10.1016/j.corsci.2011.11.013
20 Tan L, Ren X, Allen T R. Corrosion behavior of 9-12% Cr ferritic-martensitic steels in supercritical water [J]. Corros. Sci., 2010, 52: 1520
21 Bischoff J, Motta A T, Eichfeld C, et al. Corrosion of ferritic-martensitic steels in steam and supercritical water [J]. J. Nucl. Mater., 2013, 441: 604
doi: 10.1016/j.jnucmat.2012.09.037
22 Birks N, Meier G H, Pettit F S. Introduction to the High Temperature Oxidation of Metals [M]. Cambridge: Cambridge University Press, 2006
23 Sennour M, Marchetti L, Martin F, et al. A detailed TEM and SEM study of Ni-base alloys oxide scales formed in primary conditions of pressurized water reactor [J]. J. Nucl. Mater., 2010, 402: 147
doi: 10.1016/j.jnucmat.2010.05.010
24 Tawancy H M, Ul-Hamid A, Abbas N M. Practical Engineering Failure Analysis [M]. New York: Marcel Dekker, 2004: 381
25 Zhong X Y, Han E H, Wu X Q. Corrosion behavior of alloy 690 in aerated supercritical water [J]. Corros. Sci., 2013, 66: 369
doi: 10.1016/j.corsci.2012.10.001
26 Zhang Q, Tang R, Yin K J, et al. Corrosion behavior of Hastelloy C-276 in supercritical water [J]. Corros. Sci., 2009, 51: 2092
doi: 10.1016/j.corsci.2009.05.041
27 Zhu Z L, Ma C H, Li Y Y, et al. Oxidation behavior of Nickel-based alloy Inconel617B in supercritical water at 700oC [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 655
朱忠亮, 马辰昊, 李宇旸 等. 镍基合金Inconel617B在700℃超临界水环境中的氧化行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 655
doi: 10.11902/1005.4537.2021.145
28 He N K, Wang Y X, Zhou S G, et al. Oxidation behavior in water vapor and tribological property in atmosphere with 60% relative humidity at 580oC for Inconel 718 alloy [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 271
贺南开, 王永欣, 周升国 等. Inconel 718合金在580℃下水蒸气环境中的氧化行为及摩擦学性能 [J]. 中国腐蚀与防护学报, 2023, 43: 271
doi: 10.11902/1005.4537.2022.069
29 Wagner C. Theoretical analysis of the diffusion processes determining the oxidation rate of alloys [J]. J. Electrochem. Soc., 1952, 99: 369
doi: 10.1149/1.2779605
30 Viswanathan R. Advances in materials technology for fossil power plants [M]. marco island, florida, USA: ASM International, 2008
31 Dong Z Q, Liu Z, Li M, et al. Effect of ultrasonic impact peening on the corrosion of ferritic-martensitic steels in supercritical water [J]. J. Nucl. Mater., 2015, 457: 266
doi: 10.1016/j.jnucmat.2014.11.028
[1] JIANG Bochen, LEI Yanhua, ZHANG Yuliang, LI Xiaofeng, LIU Tao, DONG Lihua. Research Progress on Application of Functional Superhydrophobic Coatings for Anti-icing in Polar Regions[J]. 中国腐蚀与防护学报, 2024, 44(1): 1-14.
[2] CHEN Shirun, CHEN Wenge, QIAN Ying, ZHANG Hui. Preparation and Perfromance of Rare Earth Cerium Modified Graphene Oxide / Waterborne Epoxy Resin Composite Coating[J]. 中国腐蚀与防护学报, 2024, 44(1): 107-118.
[3] JIANG Guangrui, LIU Guanghui, SHANG Ting. Effect of Heat Treatment Process on Microstructure and Corrosion Resistance of ZnAlMg Coating[J]. 中国腐蚀与防护学报, 2024, 44(1): 246-254.
[4] LI Jiancheng, ZHAO Jing, XIE Xin, WANG Jinlong, CHEN Minghui, WANG Fuhui. Preparation of Phosphate Coatings on Ti-alloy and Their Corrosion Behavior Beneath Salt-mixture in Water Vapor Flow at 650oC[J]. 中国腐蚀与防护学报, 2024, 44(1): 159-166.
[5] WANG Shuang, WANG Zixing, CHENG Xiaonong, LUO Rui. Effect of Rare Earth La on High Temperature Oxidation of Cobalt-based Superalloy GH5188 at 1100oC[J]. 中国腐蚀与防护学报, 2024, 44(1): 221-228.
[6] FENG Kangkang, REN Yanjie, LV Yunlei, ZHOU Mengni, CHEN Jian, NIU Yan. Effect of Si Content on Oxidation Behavior of Quaternary Fe-20Ni-20Cr- ySi Alloys in Oxygen at 900oC[J]. 中国腐蚀与防护学报, 2024, 44(1): 100-106.
[7] REN Yan, ZHANG Xintao, GAI Xin, XU Jingjun, ZHANG Wei, CHEN Yong, LI Meishuan. High Temperature Oxidation Behavior of Quaternary (Cr2/3Ti1/3)3AlC2 MAX Ceramic in Air and Steam[J]. 中国腐蚀与防护学报, 2023, 43(6): 1284-1292.
[8] FAN Yufang, ZHANG Yafei, YIN Liusen, ZHAO Conghui, HE Yanbin, ZHANG Chuanxiang. Research Progress on Carbon Dots in Field of Metal Corrosion and Protection[J]. 中国腐蚀与防护学报, 2023, 43(6): 1237-1246.
[9] SHANG Ting, JIANG Guangrui, LIU Guanghui, QIN Hancheng. Effect of Heat Treatment Process on Microstructure and Corrosion Resistance of Zn-6%Al-3%Mg Coating[J]. 中国腐蚀与防护学报, 2023, 43(6): 1413-1418.
[10] YU Chenjun, ZHANG Tianyi, ZHANG Naiqiang, ZHU Zhongliang. Influence of Thermal Aging on Corrosion Behavior of Ferritic-martensitic Steel P92 in Supercritical Water[J]. 中国腐蚀与防护学报, 2023, 43(6): 1349-1357.
[11] QU Weiwei, CHEN Zehao, PEI Yanling, LI Shusuo, WANG Fuhui. Spreading and Corrosion Behavior of CMAS Melt on Different Materials for Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2023, 43(6): 1407-1412.
[12] TIAN Guangyuan, YAN Chengming, YANG Zhihao, WANG Junsheng. Research Progress on Corrosion and Protection of Corrosion-resistant Mg-Li Alloys[J]. 中国腐蚀与防护学报, 2023, 43(6): 1255-1263.
[13] ZHANG Kaili, DU Lili, TAN Jun, LIU Xiangzhou, MA Ji, QIU Ping. Preparation and Properties of Slippery Anti-corrosion Coating Based on SiO2 with Coral Cluster Morphology[J]. 中国腐蚀与防护学报, 2023, 43(6): 1319-1328.
[14] XIAO Wentao, LIU Jing, PENG Jingjing, ZHANG Xian, WU Kaiming. Corrosion Resistance of Two Arc Spraying Coatings on EH36 Steel in Neutral Salt Spray Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1003-1014.
[15] XUAN Xingyu, QU Shaopeng, ZHAO Xingya. Preparation and Performance of CeO2@MWCNTs/EP Composite Coatings[J]. 中国腐蚀与防护学报, 2023, 43(5): 992-1002.
No Suggested Reading articles found!