Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (1): 130-140    DOI: 10.11902/1005.4537.2023.033
Current Issue | Archive | Adv Search |
Soil Corrosion Characteristics of Q235 Steel Grounding Material Used in Power Grid in Anhui Province
BIAN Yafei1, TANG Wenming1(), ZHANG Jie2, MAO Ruirui1, MIAO Chunhui2, CHEN Guohong2
1.School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
2.Electric Power Research Institute, Anhui Electric Power Co. Ltd., State Grid, Hefei 230601, China
Cite this article: 

BIAN Yafei, TANG Wenming, ZHANG Jie, MAO Ruirui, MIAO Chunhui, CHEN Guohong. Soil Corrosion Characteristics of Q235 Steel Grounding Material Used in Power Grid in Anhui Province. Journal of Chinese Society for Corrosion and protection, 2024, 44(1): 130-140.

Download:  HTML  PDF(8259KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Q235 steel samples were buried for one year in soils of test sites in 100 substations, which distributed at different areas in Anhui province presenting various typical soils of peculiar characteristics and meteorological conditions. Afterwards, the corrosion rates and corrosion products of the test samples were assessed via mass loss measurement, SEM, EDS and XRD. The results showed the rust scales formed on the samples were composed mainly of Fe3O4, Fe2O3, γ-FeOOH and α-FeOOH, but their relative amount varied by different soil test sites. The S2- content in the soils of some soil test sites is high enough to generate FeS as the corrosion product of the samples. It indicates that the physiological activities of microorganisms have an effect on the soil corrosion behavior of the Q235 steel. In general, according to the test results from several typical soil test sites of Anhui province, Q235 steel samples present an average soil corrosion rate of 0.053 mm/a, and their corrosion grades are mostly “moderate”. The soil test sites where the samples have a high corrosion rate are mainly located in the areas along the Changjiang River and/or the industrial pollution areas. In terms of the Spearman correlation analysis, the correlation degree sequence of the index of soil texture and soil physicochemical properties affecting the one year soil corrosion behavior of the Q235 steel is: pH value > soil texture > soil resistance > salt content > water content > redox potential > Cl- concentration.

Key words:  power grid      grounding material      soil corrosion      corrosion characteristic      correlation analysis     
Received:  15 February 2023      32134.14.1005.4537.2023.033
ZTFLH:  TG174  
Fund: Science and Technology Research Project of Anhui Electric Power Co. Ltd., State Grid(B11205210011)
Corresponding Authors:  TANG Wenming, E-mail: wmtang69@126.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.033     OR     https://www.jcscp.org/EN/Y2024/V44/I1/130

Serial numberIndexMethodSite
1Soil textureDry/wet test methodField
2Soil resistanceThree pole method
3Redox potentialPotentiometric method
4S2-Test strip method
5Cl-、SO42-Ion chromatographyLaboratory
6Water contentGravimetric method
7pHPotentiometric method
8Salt contentGravimetric method
Table 1  List of soil testing indexes, methods and sites
SiteCityAverage corrosion rate / g·m-2·a-1Environment
H1Anqing502.74Industrial pollution
R1Chizhou547.14Industrial pollution
K1Fuyang453.15Village
T28Huainan290.03Village
N4Lu'an388.15Village
Table 2  Soil corrosion rate and environmental characteristics of the 5 representative sites
SiteSoil texture

Soil resistance

Ω

Redox potential

mV

pHWater content

Salt content

g·kg-1

Cl- content

mg·kg-1

H1Sandy silt1035471.55.2718.3%0.6514.83
R1Clay loam103.45777.2926.64%0.7514.16
K1Silt68.2447.57.9618.89%0.3724.36
T28Silt102.9614.57.8417.02%0.4222.23
N4Sandy soil89.75747.0610.24%0.5511.83
Table 3  Soil physicochemical indexes of the 5 representative sites
Fig.1  XRD patterns of corrosion products of Q235 steel samples after soil corrosion in 5 representative sites for 1 a
Fig.2  Surface morphologies of Q235 steel samples after soil corrosion in the representative sites for 1 a: (a) H1, (b) N4
Fig.3  Surface morphologies of Q235 steel samples after soil corrosion in the T28 site for 1 a: (a, b) α-FeOOH, (c, d) γ-FeOOH
Fig.4  Surface morphology of Q235 steel sample after soil corrosion for 1 a (a) and EDS spectra (b, c) of point 1 and 2 in Fig.4a, respectively

Soil texture

Proportion

of sites

Average

corrosion rate

g·m-2·a-1

Soil

resistance

Ω

Redox

potential

mV

Water

content

Salt

content

g·kg-1

Cl-

content

mg·kg-1

pH

Sandy soil5%465.17248.43543.1721.70%0.4924.086.80
Sandy silt16%367.06529.45522.4422.17%0.5412.956.42
Silt22%344.79268.64512.0522.26%0.7118.377.26
Silty loam21%328.86101.19499.8321.28%0.6318.707.44
Clay loam14%345.03108.63547.1327.12%0.6214.647.42
Clay22%333.89108.85551.3229.13%0.8920.287.52
Table 4  Physicochemical characteristics of 6 kinds of soils in Anhui province
Fig.5  Physical and chemical characteristics of 6 kinds of soil and corrosion rate of Q235 steel samples after soil corrosion for 1 a
Fig.6  Surface morphologies of Q235 steel samples after acid etching after soil corrosion for 1 a: (a) clay, (b) sandy soil
pH<4.54.5-5.55.5-6.56.5-7.57.5-8.5>8.5
Extremely acidicStrongly acidicSlightly acidicNeutralSlightly alkalineStrong alkaline
Table 5  Acidity and alkalinity grades of soil in China according to its pH value
Fig.7  Scatter diagram and linear fitting of the corrosion rate of Q235 steel samples after soil corrosion for 1 a and the pH value of soil in the 58 sites of Anhui province

Corrosion

rate

Soil

texture

Soil resistanceRedox potentialpH

Water

content

Salt

content

Cl-

content

Corrosion rate1.000-0.2240.216-0.023-0.440**-0.131-0.1670.008
Soil texture-0.2241.000-0.395**0.0930.343**0.436**0.0800.152
Soil resistance0.216-0.395**1.000-0.056-0.429**-0.457**0.040-0.433**
Redox potential-0.0230.093-0.0561.000-0.1260.114-0.083-0.017
pH-0.440**0.343**-0.429**-0.1261.0000.1160.0760.229
Water content-0.1310.436**-0.457**0.1140.1161.000-0.1370.265
Slat content-0.1670.0800.040-0.0830.076-0.1371.000-0.212
Cl- content0.0080.152-0.433**-0.0170.2290.265-0.2121.000
Table 6  Spearman correlation coefficients of the corrosion rate of Q235 steel samples after soil corrosion in the 58 sites of Anhui province for 1 a and the physical and chemical properties of soil
1 Xu H, Wen X S, Huang L. Optimization design of grounding grid of large substation [J]. High Voltage Eng., 2005, 31(12): 63
徐 华, 文习山, 黄 玲. 大型变电站接地网的优化设计 [J]. 高电压技术, 2005, 31(12): 63
2 Gao Y B, Du X G, Wang Q W, et al. Corrosion behavior of copper in a simulated grounding condition in electric power grid [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 435
高义斌, 杜晓刚, 王启伟 等. 铜在电网接地工况下的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 435
doi: 10.11902/1005.4537.2022.098
3 Ke W. China Corrosion Investigation Report [M]. Beijing: Chemical Industry Press, 2003
柯 伟. 中国腐蚀调查报告 [M]. 北京: 化学工业出版社, 2003
4 Yu J F, Chen X H, Li S F, et al. Study on corrosion behavior of Q235 steel in soil of Hubei substations [J]. Total Corros. Control, 2011, 25(10): 39
余建飞, 陈心河, 李善风 等. Q235钢在湖北变电站土壤中的腐蚀行为研究 [J]. 全面腐蚀控制, 2011, 25(10): 39
5 Shao H P. Study on soil corrosion factors of substation grounding network [J]. Electr. Power Equip. Manag., 2020, (1): 113
邵洪平. 变电站接地网的土壤腐蚀因素研究 [J]. 电力设备管理, 2020, (1): 113
6 Gao Z Y, Jiang B, Fan Z B, et al. Corrosion behavior of typical grounding materials in artificial alkaline soil solution [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 191
高智悦, 姜 波, 樊志彬 等. 典型接地材料在碱性土壤模拟液中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 191
doi: 10.11902/1005.4537.2022.061
7 Yu L B, Yan M C, Wang B B, et al. Microbial corrosion of Q235 steel in acidic red soil environment [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 10
于利宝, 闫茂成, 王彬彬 等. 酸性土壤环境中Q235钢的微生物腐蚀行为 [J]. 中国腐蚀与防护学报, 2018, 38: 10
doi: 10.11902/1005.4537.2017.009
8 Wang X H, Yang G Y, Huang H, et al. AC stray current corrosion law of buried steel pipeline [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 293
王新华, 杨国勇, 黄 海 等. 埋地钢质管道交流杂散电流腐蚀规律研究 [J]. 中国腐蚀与防护学报, 2013, 33: 293
9 Lim K S, Yahaya N, Md Noor N, et al. Effects of soil properties on the corrosion progress of X70-carbon steel in tropical region [J]. Ships Offshore Struct., 2017, 12(7): 991
10 Suganya S, Jeyalakshmi R. Corrosion of mild steel buried underground for 3 years in different soils of varying textures [J]. J. Mater. Eng. Perform., 2019, 28: 863
doi: 10.1007/s11665-019-3855-7
11 Wang G Y. Study on correlationship between the halophytic vegetation and soil salinity [D]. Huhhot: Inner Mongolia Agricultural University, 2013
王广元. 土默川平原盐生植物与土壤盐分空间分布相关性研究 [D]. 呼和浩特: 内蒙古农业大学, 2013
12 Wang Y Y, Bai H K, Wang S Q, et al. Power users’ behavior portrait based on information gain and Spearman correlation coefficient [J]. Electr. Power Eng. Technol., 2022, 41(4): 220
王圆圆, 白宏坤, 王世谦 等. 基于信息增益与Spearman相关系数的电力用户行为画像 [J]. 电力工程技术, 2022, 41(4): 220
13 Liu M, Dong W B, Zuo X H. Clustering analysis on the development of industrial enterprises in Anhui province [J]. J. Shanxi Norm. Univ. (Nat. Sci. Ed.), 2017, 31(4): 96
刘 明, 董文兵, 左晓慧. 安徽省各市工业企业发展情况的聚类分析 [J]. 山西师范大学学报(自然科学版), 2017, 31(4): 96
14 Chen Z Y. Evaluation of industrial eco-efficiency of Anhui city based on DEA method [J]. Commer. Times, 2012, (11): 139
陈遵一. 基于DEA方法的安徽城市工业生态效率评价 [J]. 商业时代, 2012, (11): 139
15 Perdomo J J, Chabica M E, Song I. Chemical and electrochemical conditions on steel under disbonded coatings: the effect of previously corroded surfaces and wet and dry cycles [J]. Corros. Sci., 2001, 43: 515
doi: 10.1016/S0010-938X(00)00103-7
16 Nie X H, Li Y L, Li J K, et al. Morphology, products and corrosion mechanism analysis of Q235 carbon steel in sea-shore salty soil [J]. J. Mater. Eng., 2010, (8): 24
聂向晖, 李云龙, 李记科 等. Q235碳钢在滨海盐土中的腐蚀形貌、产物及机理分析 [J]. 材料工程, 2010, (8): 24
17 Zhang S Q, Yin Y D, Li H X, et al. Study on soil corrosiveness in Liaoning [J]. Total Corros. Control, 1996, 10(3): 15
张淑泉, 银耀德, 李洪锡 等. 辽宁土壤腐蚀性研究 [J]. 全面腐蚀控制, 1996, 10(3): 15
18 Huang T, Chen X P, Wang X D, et al. Effect of pH value on corrosion behavior of Q235 steel in an artificial soil [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 31
黄 涛, 陈小平, 王向东 等. pH值对Q235钢在模拟土壤中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2016, 36: 31
19 De La Fuente D, Díaz I, Simancas J, et al. Long-term atmospheric corrosion of mild steel [J]. Corros. Sci., 2011, 53: 604
doi: 10.1016/j.corsci.2010.10.007
20 Domingo C, Rodrı́guez-Clemente R, Blesa M. Morphological properties of α-FeOOH, γ-FeOOH and Fe3O4 obtained by oxidation of aqueous Fe(II) solutions [J]. J. Colloid. Interf. Sci., 1994, 165: 244
doi: 10.1006/jcis.1994.1225
21 Li H, Liu Y H, Zhao L H, et al. Corrosion behavior of 300M ultra high strength steel in simulated marine environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 87
李 晗, 刘元海, 赵连红 等. 300MPa超高强度钢在模拟海洋环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 87
22 Chen X, Li S B, Zheng Z S, et al. Microbial corrosion behavior of X70 pipeline steel in an artificial solution for simulation of soil corrosivity at Daqing area [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 175
陈 旭, 李帅兵, 郑忠硕 等. X70管线钢在大庆土壤环境中微生物腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 175
23 Feng D C. Study of corrosion behavior of Q235 and X70 steels in Baotou soils [D]. Baotou: Inner Mongolia University of Science & Technology, 2008
冯佃臣. Q235钢和X70管线钢在包头土壤中的腐蚀规律研究 [D]. 包头: 内蒙古科技大学, 2008
24 He J X, Qin X Z, Yi P, et al. Corrosion exposure study on Q235 steel in marine atmospheric [J]. Suf. Technol., 2006, 35(4): 21
何建新, 秦晓洲, 易 平 等. Q235钢海洋大气腐蚀暴露试验研究 [J]. 表面技术, 2006, 35(4): 21
25 Xv L, Zhou X L, Zheng P H, et al. Research of corrosion behavior of Q235 steel in Wuhan soil [J]. Mater. Prot., 2022, 55(2): 74
徐 立, 周学杰, 郑鹏华 等. Q235钢在武汉土壤中的腐蚀行为研究 [J]. 材料保护, 2022, 55(2): 74
26 Ding C, Zhang J L, Yu Y C, et al. Corrosion kinetics of A572Gr.65 steel in different simulated soil solutions [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 149
丁 聪, 张金玲, 于彦冲 等. A572Gr.65钢在不同土壤模拟液中的腐蚀动力学 [J]. 中国腐蚀与防护学报, 2022, 42: 149
27 Li J, Su H, Chai F, et al. Effect of pH values on the corrosion behavior of Q235 steel in simulated acidic soils [J]. Chin. J. Eng., 2015, 37: 473
李 健, 苏 航, 柴 锋 等. pH值对Q235钢在模拟酸性土壤中腐蚀行为的影响 [J]. 工程科学学报, 2015, 37: 473
28 Cao J F. Effects of temperature and water content on soil corrosion behavior of carbon steel at different exposure time [D]. Wuhan: Huazhong University of Science and Technology, 2007
曹君飞. 温度湿度对在不同腐蚀阶段碳钢土壤腐蚀行为影响的研究 [D]. 武汉: 华中科技大学, 2007
29 Dong C F, Li X G, Wu J W, et al. Review in experimentation and data processing of soil corrosion [J]. Corros. Sci. Prot. Technol., 2003, 15: 154
董超芳, 李晓刚, 武俊伟 等. 土壤腐蚀的实验研究与数据处理 [J]. 腐蚀科学与防护技术, 2003, 15: 154
30 Chen Y. Research of the corrosion law of the effect of chloride ions on the water supply pipelines in the soil [D]. Tianjin: Tianjin University, 2016
陈 瑛. 氯离子对供水管道土壤腐蚀影响机理研究 [D]. 天津: 天津大学, 2016
31 Gao Y. Study on chloride ion corrosion behaviors of long-distance pipeline [D]. Xi'an: Xi'an Shiyou University, 2013
高 英. 长输管线氯离子腐蚀行为研究 [D]. 西安: 西安石油大学, 2013
32 Huang T. Study on corrosion behavior of substation grounding network materials in simulated soil [D]. Kunming: Kunming University of Science and Technology, 2014
黄 涛. 变电站接地网材料在模拟土壤中的腐蚀行为研究 [D]. 昆明: 昆明理工大学, 2014
33 Guo Z Y. Study on corrosive mechanism and zoning evaluation of steel under soil environment in Shanxi province [D]. Taiyuan: Taiyuan University of Technology, 2020
郭志远. 山西省土壤环境对钢的腐蚀性分区评价及其机理研究 [D]. 太原: 太原理工大学, 2020
34 Nakajima Y, Moriya T. On the trial utilization of an oxygen concentration cell in an open-coil decarburization furnace [J]. Soild state Ion., 1981, 3/4: 605
35 Dong L B, Yu H, Feng B H. Soil resistivity survey in Pudong area [J]. Shanghai Gas, 1994, (5): 44
东留宝, 于 宏, 冯宝鹤. 浦东地区土壤电阻率调查 [J]. 上海煤气, 1994, (5): 44
36 Song G L, Cao C N, Lin H C, et al. A review of soil corrosion evaluation methods [J]. Corros. Sci. Prot. Technol., 1993, 5: 268
宋光铃, 曹楚南, 林海潮 等. 土壤腐蚀性评价方法综述 [J]. 腐蚀科学与防护技术, 1993, 5: 268
37 Chen S X. Research on corrosion of grounding grid materials in typical soil in China [D]. Beijing: China Academy of Machinery Science and Technology, 2016
陈散兴. 接地网材料在我国典型土壤环境下的腐蚀研究 [D]. 北京: 机械科学研究总院, 2016
38 Hao H Y. Experimental study on contaminated soil resistivity and the corrosive evaluation for Q235 steel [D]. Taiyuan: Taiyuan University of Technology, 2015
郝海艳. 污染土电阻率与Q235钢的腐蚀性评价试验研究 [D]. 太原: 太原理工大学, 2015
39 Murray J N, Moran P J. Influence of moisture on corrosion of pipeline steel in soils using in situ impedance spectroscopy [J]. Corrosion, 1989, 45: 34
doi: 10.5006/1.3577885
40 Ismail A I M, El-Shamy A M. Engineering behaviour of soil materials on the corrosion of mild steel [J]. Appl. Clay Sci., 2009, 42: 356
[1] LI Lemin, ZHANG Jie, BIAN Yafei, MIAO Chunhui, CHEN Guohong, TANG Wenming. Atmospheric Corrosion Characteristics and Regularity of the Q235, 40Cr Steels Commonly-used in Power Grid Equipment in Anhui Province[J]. 中国腐蚀与防护学报, 2023, 43(3): 535-543.
[2] GAO Yibin, DU Xiaogang, WANG Qiwei, ZHONG Liming, FU Wenhua, ZHANG Hanping, ZHANG Meng, JIANG Chunhai. Corrosion Behavior of Copper in a Simulated Grounding Condition in Electric Power Grid[J]. 中国腐蚀与防护学报, 2023, 43(2): 435-440.
[3] GAO Zhiyue, JIANG Bo, FAN Zhibin, WANG Xiaoming, LI Xingeng, ZHANG Zhenyue. Corrosion Behavior of Typical Grounding Materials in Artificial Alkaline Soil Solution[J]. 中国腐蚀与防护学报, 2023, 43(1): 191-196.
[4] HUANG Zhaoxin, ZHU Zhiping, ZHOU Pan, JIANG Yuankang, HE Mingpeng, WANG Zhenggang. Corrosion Characteristics of Propylene Glycol Antifreeze in Valve Cooling System of Converter Station[J]. 中国腐蚀与防护学报, 2022, 42(3): 471-478.
[5] LIU Yichao, ZHONG Xiankang, HU Junying. Characteristics and Mechanisms of Elemental Sulfur Induced Corrosion of Sulfur-resistant Steels in Wet Flow CO2 Environment[J]. 中国腐蚀与防护学报, 2022, 42(3): 369-377.
[6] DING Cong, ZHANG Jinling, YU Yanchong, LI Yelei, WANG Shebin. Corrosion Kinetics of A572Gr.65 Steel in Different Simulated Soil Solutions[J]. 中国腐蚀与防护学报, 2022, 42(1): 149-155.
[7] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[8] ZHU Yichen,LIU Guangming,LIU Xin,PEI Feng,TIAN Xu,SHI Chao. Investigation on Interrelation of Field Corrosion Test and Accelerated Corrosion Test of Grounding Materials in Red Soil Environment[J]. 中国腐蚀与防护学报, 2019, 39(6): 550-556.
[9] Libao YU, Maocheng YAN, Binbin WANG, Yun SHU, Jin XU, Cheng SUN. Microbial Corrosion of Q235 Steel in Acidic Red Soil Environment[J]. 中国腐蚀与防护学报, 2018, 38(1): 10-17.
[10] Tao HUANG,Xiaoping CHEN,Xiangdong WANG,Fengyi MI,Rui LIU,Xiangyang LI. Effect of pH Value on Corrosion Behavior of Q235 Steel in an Artificial Soil[J]. 中国腐蚀与防护学报, 2016, 36(1): 31-38.
[11] Zhian DENG,Shuyi LI,Xiaokun LI,Shan WANG,Xiaojun WANG. A Prediction Method Based on Fuzzy Neural Network for Corrosion Rate of Marine Pipelines[J]. 中国腐蚀与防护学报, 2015, 35(6): 571-576.
[12] YAO Huiping, YAN Maocheng, YANG Xu, SUN Cheng. Electrochemical Behavior of X80 Pipeline Steel in the Initial Stage of Corrosion in an Acidic Red Soil[J]. 中国腐蚀与防护学报, 2014, 34(5): 472-476.
[13] NIE Xianghui, LI Xiaogang, LI Yunlong, LI Jike, ZHANG Hongbo. ACCELERATION RATIOS AND DYNAMIC CORRELATION EXPERIMENTS ON THE CORROSION LOSS OF Q235 STEEL IN SEASHORE SOIL[J]. 中国腐蚀与防护学报, 2011, 31(3): 208-213.
[14] HUANG Jiayi QIU Yubing GUO Xingpeng. CLUSTER ANALYSIS OF ELECTROCHEMICAL NOISE FOR X70 STEEL IN KU'ERLE SOIL[J]. 中国腐蚀与防护学报, 2009, 29(6): 453-458.
[15] . REGULARITY OF VARIATION OF CORROSION OF Pb, Al, Cu WITH CLIMATE[J]. 中国腐蚀与防护学报, 2007, 27(6): 326-328 .
No Suggested Reading articles found!