Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (1): 213-220    DOI: 10.11902/1005.4537.2023.029
Current Issue | Archive | Adv Search |
Influence of Rolling on Corrosion Behavior of ZM5 Mg-alloy
SONG Dongdong1, WAN Hongxia2(), XU Dong1, ZHOU Qian1
1.Key Laboratory of Power Station Energy Transfer Conversion and System, Ministry of Education, North China Electric Power University, Beijing 102206, China
2.School of New Energy and Materials, China University of Petroleum, Beijing 102249, China
Cite this article: 

SONG Dongdong, WAN Hongxia, XU Dong, ZHOU Qian. Influence of Rolling on Corrosion Behavior of ZM5 Mg-alloy. Journal of Chinese Society for Corrosion and protection, 2024, 44(1): 213-220.

Download:  HTML  PDF(7504KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion performance and microstructure of ZM5 Mg-alloy before and after rolling were comparatively studied by hydrogen evolution measurement, mass loss method, electrochemical impedance spectroscopy (EIS), dynamic potential polarization measurement, XRD and SEM. The electron work function of different microstructures was numerically simulated through first principle analysis. The results show that rolling causes an obvious preferred orientation for ZM5 Mg-alloy. The corrosion mass loss and hydrogen evolution of ZM5 Mg-alloy decrease significantly after rolling, while the polarization resistance increases obviously. These all indicated that the corrosion resistance of the rolled ZM5 Mg-alloy is better than that of the cast one. The simulation results show that the rearrangement of α-phase enhances the electronic work function of the Mg-alloy.

Key words:  Mg-alloy      rolling      corrosion behavior      first-principles      electron work function     
Received:  10 February 2023      32134.14.1005.4537.2023.029
ZTFLH:  TG147  
Fund: National Natural Science Foundation of China(51701055);National Natural Science Foundation of China(52101112);Fundamental Research Funds for the Central Universities(2023MS011)
Corresponding Authors:  WAN Hongxia, E-mail: wanhongxia88@163.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.029     OR     https://www.jcscp.org/EN/Y2024/V44/I1/213

Fig.1  Morphology of ZM5 Mg-alloy before (a) and after (b) the rolling process
Fig.2  XRD pattern of the cast and rolled ZM5 Mg-alloy
Fig.3  Mass loss (a, c) and the dependence of hydrogen evolution volume (b, d) of the cast (a, b) and rolled (c, d) ZM5 Mg- alloy during immersion in 3.5%NaCl solution
Fig.4  Polarization curves of ZM5 Mg-alloy before and after rolling in 3.5%NaCl solution
Sample

Ecorr

V (vs. SCE)

Icorr

A·cm-2

Tafel slope

V·dec-1

Cast-1.6215.091 × 10-4

βa = 0.06336

βb = -0.14123

Roll-1.5751.362 × 10-4

βa = 0.15772

βb = -0.1508

Table 1  Fitting data of polarization curves
Fig.5  Phase angle (a, d, g), impedance module (b, e, h) and Nyquist (c, f, i) plots of the cast and rolled ZM5 Mg-alloy during 0.5 h (a-c), 12 h (d-f) and 168 h (g-i) immersion time in 3.5%NaCl solution
Fig.6  Equivalent circuits of the cast and rolled alloy for different immersion periods
Fig.7  Rp of ZM5 Mg-alloy before and after rolling during various immersion time in 3.5%NaCl solution
Fig.8  The electrostatic energies and calculation models of the of ZM5 Mg-alloy before (a, c) and after rolling (b, d)
1 Xu W Q, Birbilis N, Sha G, et al. A high-specific-strength and corrosion-resistant magnesium alloy [J]. Nat. Mater., 2015, 14: 1229
doi: 10.1038/nmat4435 pmid: 26480229
2 Pan H, Pang K, Cui F Z, et al. Effect of alloyed Sr on the microstructure and corrosion behavior of biodegradable Mg-Zn-Mn alloy in Hanks' solution [J]. Corros. Sci., 2019, 157: 420
doi: 10.1016/j.corsci.2019.06.022
3 Trang T T T, Zhang J H, Kim J H, et al. Designing a magnesium alloy with high strength and high formability [J]. Nat. Commun., 2018, 9: 2522
doi: 10.1038/s41467-018-04981-4 pmid: 29955065
4 Luo A A. Magnesium: Current and potential automotive applications [J]. JOM, 2002, 54: 42
5 Lentz M, Risse M, Schaefer N, et al. Strength and ductility with { 10 1 ¯ 1 }-{ 10 1 ¯ 2 } double twinning in a magnesium alloy [J]. Nat. Commun., 2016, 7: 11068
doi: 10.1038/ncomms11068 pmid: 27040648
6 Pourbahari B, Mirzadeh H, Emamy M, et al. Enhanced ductility of a fine-grained Mg-Gd-Al-Zn magnesium alloy by hot extrusion [J]. Adv. Eng. Mater., 2018, 20: 1701171
7 Bian M Z, Sasaki T T, Nakata T, et al. Bake-hardenable Mg-Al-Zn-Mn-Ca sheet alloy processed by twin-roll casting [J]. Acta Mater., 2018, 158: 278
doi: 10.1016/j.actamat.2018.07.057
8 Gryguc A, Behravesh S B, Shaha S K, et al. Low-cycle fatigue characterization and texture induced ratcheting behaviour of forged AZ80 Mg alloys [J]. Int. J. Fatigue, 2018, 116: 429
doi: 10.1016/j.ijfatigue.2018.06.028
9 Hou L G, Wang T Z, Wu R Z, et al. Microstructure and mechanical properties of Mg-5Li-1Al sheets prepared by accumulative roll bonding [J]. J. Mater. Sci. Technol., 2018, 34: 317
doi: 10.1016/j.jmst.2017.02.005
10 Birbilis N, Williams G, Gusieva K, et al. Poisoning the corrosion of magnesium [J]. Electrochem. Commun., 2013, 34: 295
doi: 10.1016/j.elecom.2013.07.021
11 Liu Z Q, He X X, Qi K, et al. Galvanic corrosion behavior for galvanic couple of AZ91D Mg-alloy/2002 Al-alloy in 0.5 mg/L NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1016
刘泽琪, 何潇潇, 祁 康 等. AZ91D镁合金和2002铝合金在0.5 mg/L NaCl溶液中的电偶腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 1016
doi: 10.11902/1005.4537.2021.355
12 Zhang Z Q, Chen Z B, Dong Q J, et al. Galvanic corrosion behavior of low alloy steel, stainless steel and Al-Mg alloy in simulated deep sea environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 417
张泽群, 陈质彬, 董其娟 等. 低合金钢、不锈钢和铝镁合金在模拟深海环境中的电偶腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 417
doi: 10.11902/1005.4537.2021.166
13 Liu Y X, Xu A Y. Characterization of pitting corrosion behavior of AZ91 Mg-alloy without and with MAO coating [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1034
刘玉项, 徐安阳. AZ91镁合金和MAO涂层的点蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 1034
doi: 10.11902/1005.4537.2021.320
14 Wan H X, Cai Y, Song D D, et al. Investigation of corrosion behavior of Mg-6Gd-3Y-0.4Zr alloy in Xisha atmospheric simulation solution [J]. Ocean Eng., 2020, 195: 106760
15 Cui Z Y, Ge F, Lin Y, et al. Corrosion behavior of AZ31 magnesium alloy in the chloride solution containing ammonium nitrate [J]. Electrochim. Acta, 2018, 278: 421
doi: 10.1016/j.electacta.2018.05.059
16 Bahmani A, Arthanari S, Shin K S. Improvement of corrosion resistance and mechanical properties of a magnesium alloy using screw rolling [J]. J. Alloy. Compd., 2020, 813: 152155
doi: 10.1016/j.jallcom.2019.152155
17 Gui Z Z, Kang Z X, Li Y Y. Mechanical and corrosion properties of Mg-Gd-Zn-Zr-Mn biodegradable alloy by hot extrusion [J]. J. Alloy. Compd., 2016, 685: 222
doi: 10.1016/j.jallcom.2016.05.241
18 Shuai C J, Yang Y W, Wu P, et al. Laser rapid solidification improves corrosion behavior of Mg-Zn-Zr alloy [J]. J. Alloy. Compd., 2017, 691: 961
doi: 10.1016/j.jallcom.2016.09.019
19 Zhang T, Shao Y W, Meng G Z, et al. Corrosion of hot extrusion AZ91 magnesium alloy: I-relation between the microstructure and corrosion behavior [J]. Corros. Sci., 2011, 53: 1960
doi: 10.1016/j.corsci.2011.02.015
20 Orlov D, Ralston K D, Birbilis N, et al. Enhanced corrosion resistance of Mg alloy ZK60 after processing by integrated extrusion and equal channel angular pressing [J]. Acta Mater., 2011, 59: 6176
doi: 10.1016/j.actamat.2011.06.033
21 Oktay G, ürgen M. Corrosion behaviour of magnesium AZ31 sheet produced by twin roll casting [J]. Corros. Eng. Sci. Technol., 2015, 50: 380
22 Chang T C, Wang J Y, O C M, et al. Grain refining of magnesium alloy AZ31 by rolling [J]. J. Mater. Process. Technol., 2003, 140: 588
doi: 10.1016/S0924-0136(03)00797-0
23 He J J, Mao Y, Lu S L, et al. Texture optimization on Mg sheets by preparing soft orientations of extension twinning for rolling [J]. Mater. Sci. Eng., 2019, 760A: 174
24 Bohlen J, Chmelík F, Dobroň P, et al. Orientation effects on acoustic emission during tensile deformation of hot rolled magnesium alloy AZ31 [J]. J. Alloy. Compd., 2004, 378: 207
doi: 10.1016/j.jallcom.2003.10.102
25 He J J, Jiang B, Yu X W, et al. Strain path dependence of texture and property evolutions on rolled Mg-Li-Al-Zn alloy possessed of an asymmetric texture [J]. J. Alloy. Compd., 2017, 698: 771
doi: 10.1016/j.jallcom.2016.12.205
26 Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals [J]. Phys. Rev., 1993, 47B: 558
27 Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Phys. Rev., 1999, 59B: 1758
28 Blöchl P E. Projector augmented-wave method [J]. Phys. Rev., 1994, 50B: 17953
29 Perdew J P, Zunger A. Self-interaction correction to density-functional approximations for many-electron systems [J]. Phys. Rev., 1981, 23B: 5048
30 Liu W, Li J C, Zheng W T, et al. Ni Al(110)/Cr(110) interface: A density functional theory study [J]. Phys. Rev., 2006, 73B: 205421
31 Song G L, Johannesson B, Hapugoda S, et al. Galvanic corrosion of magnesium alloy AZ91D in contact with an aluminium alloy, steel and zinc [J]. Corros. Sci., 2004, 46: 955
doi: 10.1016/S0010-938X(03)00190-2
32 Aung N N, Zhou W. Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy [J]. Corros. Sci., 2010, 52: 589
33 Wang Z, Li D Y, Yao Y Y, et al. Wettability, electron work function and corrosion behavior of CoCrFeMnNi high entropy alloy films [J]. Surf. Coat. Technol., 2020, 400: 126222
doi: 10.1016/j.surfcoat.2020.126222
34 Li W, Li D Y. Influence of surface morphology on corrosion and electronic behavior [J]. Acta Mater., 2006, 54: 445
doi: 10.1016/j.actamat.2005.09.017
35 Luo Z, Zhu H, Ying T, et al. First principles calculations on the influence of solute elements and chlorine adsorption on the anodic corrosion behavior of Mg (0001) surface [J]. Surf. Sci., 2018, 672/673: 68
[1] XIONG Yiming, MEI Wan, WANG Zehua, YU Rui, XU Shiyao, WU Lei, ZHANG Xin. Corrosion Behavior of 5083 Al-alloy under Magnetic Field[J]. 中国腐蚀与防护学报, 2024, 44(1): 229-236.
[2] SUN Shuo, DAI Jiaming, SONG Yingwei, AI Caijiao. Corrosion Behavior of Extruded EW75 Mg-alloy in Shenyang Industrial Atmosphere[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
[3] QU Weiwei, CHEN Zehao, PEI Yanling, LI Shusuo, WANG Fuhui. Spreading and Corrosion Behavior of CMAS Melt on Different Materials for Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2023, 43(6): 1407-1412.
[4] ZHONG Jiaxin, GUAN Lei, LI Yu, HUANG Jiayong, SHI Lei. Effect of Second Phase on Corrosion Behavior of Friction-stir-welded Joints of 2xxx Series Al-alloy[J]. 中国腐蚀与防护学报, 2023, 43(6): 1247-1254.
[5] LIU Hao, GUO Xiaokai, WANG Wei, WU Liankui, CAO Fahe, SUN Qingqing. Effect of Ultrasonic Shot Peening on Microstructure and Properties of a 7075 Al-alloy Rod[J]. 中国腐蚀与防护学报, 2023, 43(6): 1293-1302.
[6] HE Jing, YU Hang, FU Ziying, YUE Penghui. Effect of Water-soluble Corrosion Inhibitor on Corrosion Behavior of Q235 Pipeline Steel for Construction[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[7] REN Huangwei, LIAO Bokai, CUI Linjing, XIANG Tengfei. Effect of Liquid Film Thickness on Corrosion Behavior of Solid Slippery Surface under Thin Liquid Film[J]. 中国腐蚀与防护学报, 2023, 43(4): 862-870.
[8] WU Jiahao, WU Liang, YAO Wenhui, YUAN Yuan, XIE Zhihui, WANG Jingfeng, PAN Fusheng. Properties of Layered Dihydroxyl Metal (MgAlLa) Oxide Composite Coatings on Different Micro-arc Oxidation Surfaces of Mg-Gd-Y-Zn-Mn Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 693-703.
[9] HUANG Zhifeng, YONG Qiwen, FANG Rui, XIE Zhihui. Superhydrophobic and Corrosion-resistant Nickel-based Composite Coating on Magnesium Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 755-764.
[10] WANG Honglun, YANG Hua, CAI Hui, LI Bowen. Corrosion Behavior of Q235 Steel by Outdoor Exposure and under Shelter in Atmosphere of Hainan Coastal[J]. 中国腐蚀与防护学报, 2023, 43(3): 677-682.
[11] HUANG Jiazhen, HUANG Tao, YANG Lijing, JI Dengping, DING He, WEI Yi, SONG Zhenlun. Electrochemical Properties and Offshore Corrosion Behavior of SAF 2304 Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 630-638.
[12] ZHANG Quanfu, SONG Lei, WANG Jian, GUO Zhenyu, REN Naidong, ZHAO Jianqi, WU Weikang, CHENG Weili. Mechanical Properties and Corrosion Behavior of an Extruded Dilute Mg-alloy Mg-0.5Bi-0.5Sn-0.5Ca[J]. 中国腐蚀与防护学报, 2023, 43(2): 428-434.
[13] WAN Hongxia, LIU Chonglin, WANG Zian, LIU Ru, CHEN Changfeng. Corrosion Behavior of P110S Oil Casing Steel in Sulfur Containing Environment[J]. 中国腐蚀与防护学报, 2023, 43(2): 371-376.
[14] LV Xin, DENG Kunkun, WANG Cuiju, NIE Kaibo, SHI Quanxin, LIANG Wei. Effect of SiCp Size on Microstructure and Corrosion Properties of Cast AZ91 Mg-alloys[J]. 中国腐蚀与防护学报, 2023, 43(1): 135-142.
[15] ZHAO Yanliang, ZHAO Jingmao. Research Progress on Protection and Self-healing Performance of Layered Double Hydroxides Coatings on Mg-alloy[J]. 中国腐蚀与防护学报, 2023, 43(1): 1-5.
No Suggested Reading articles found!