|
|
|
| Influence of Rolling on Corrosion Behavior of ZM5 Mg-alloy |
SONG Dongdong1, WAN Hongxia2( ), XU Dong1, ZHOU Qian1 |
1.Key Laboratory of Power Station Energy Transfer Conversion and System, Ministry of Education, North China Electric Power University, Beijing 102206, China 2.School of New Energy and Materials, China University of Petroleum, Beijing 102249, China |
|
Cite this article:
SONG Dongdong, WAN Hongxia, XU Dong, ZHOU Qian. Influence of Rolling on Corrosion Behavior of ZM5 Mg-alloy. Journal of Chinese Society for Corrosion and protection, 2024, 44(1): 213-220.
|
|
|
Abstract The corrosion performance and microstructure of ZM5 Mg-alloy before and after rolling were comparatively studied by hydrogen evolution measurement, mass loss method, electrochemical impedance spectroscopy (EIS), dynamic potential polarization measurement, XRD and SEM. The electron work function of different microstructures was numerically simulated through first principle analysis. The results show that rolling causes an obvious preferred orientation for ZM5 Mg-alloy. The corrosion mass loss and hydrogen evolution of ZM5 Mg-alloy decrease significantly after rolling, while the polarization resistance increases obviously. These all indicated that the corrosion resistance of the rolled ZM5 Mg-alloy is better than that of the cast one. The simulation results show that the rearrangement of α-phase enhances the electronic work function of the Mg-alloy.
|
|
Received: 10 February 2023
32134.14.1005.4537.2023.029
|
|
|
| Fund: National Natural Science Foundation of China(51701055);National Natural Science Foundation of China(52101112);Fundamental Research Funds for the Central Universities(2023MS011) |
Corresponding Authors:
WAN Hongxia, E-mail: wanhongxia88@163.com
|
| 1 |
Xu W Q, Birbilis N, Sha G, et al. A high-specific-strength and corrosion-resistant magnesium alloy [J]. Nat. Mater., 2015, 14: 1229
doi: 10.1038/nmat4435
pmid: 26480229
|
| 2 |
Pan H, Pang K, Cui F Z, et al. Effect of alloyed Sr on the microstructure and corrosion behavior of biodegradable Mg-Zn-Mn alloy in Hanks' solution [J]. Corros. Sci., 2019, 157: 420
doi: 10.1016/j.corsci.2019.06.022
|
| 3 |
Trang T T T, Zhang J H, Kim J H, et al. Designing a magnesium alloy with high strength and high formability [J]. Nat. Commun., 2018, 9: 2522
doi: 10.1038/s41467-018-04981-4
pmid: 29955065
|
| 4 |
Luo A A. Magnesium: Current and potential automotive applications [J]. JOM, 2002, 54: 42
|
| 5 |
Lentz M, Risse M, Schaefer N, et al. Strength and ductility with { 10 1 ¯ 1 }-{ 10 1 ¯ 2 } double twinning in a magnesium alloy [J]. Nat. Commun., 2016, 7: 11068
doi: 10.1038/ncomms11068
pmid: 27040648
|
| 6 |
Pourbahari B, Mirzadeh H, Emamy M, et al. Enhanced ductility of a fine-grained Mg-Gd-Al-Zn magnesium alloy by hot extrusion [J]. Adv. Eng. Mater., 2018, 20: 1701171
|
| 7 |
Bian M Z, Sasaki T T, Nakata T, et al. Bake-hardenable Mg-Al-Zn-Mn-Ca sheet alloy processed by twin-roll casting [J]. Acta Mater., 2018, 158: 278
doi: 10.1016/j.actamat.2018.07.057
|
| 8 |
Gryguc A, Behravesh S B, Shaha S K, et al. Low-cycle fatigue characterization and texture induced ratcheting behaviour of forged AZ80 Mg alloys [J]. Int. J. Fatigue, 2018, 116: 429
doi: 10.1016/j.ijfatigue.2018.06.028
|
| 9 |
Hou L G, Wang T Z, Wu R Z, et al. Microstructure and mechanical properties of Mg-5Li-1Al sheets prepared by accumulative roll bonding [J]. J. Mater. Sci. Technol., 2018, 34: 317
doi: 10.1016/j.jmst.2017.02.005
|
| 10 |
Birbilis N, Williams G, Gusieva K, et al. Poisoning the corrosion of magnesium [J]. Electrochem. Commun., 2013, 34: 295
doi: 10.1016/j.elecom.2013.07.021
|
| 11 |
Liu Z Q, He X X, Qi K, et al. Galvanic corrosion behavior for galvanic couple of AZ91D Mg-alloy/2002 Al-alloy in 0.5 mg/L NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1016
|
|
刘泽琪, 何潇潇, 祁 康 等. AZ91D镁合金和2002铝合金在0.5 mg/L NaCl溶液中的电偶腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 1016
doi: 10.11902/1005.4537.2021.355
|
| 12 |
Zhang Z Q, Chen Z B, Dong Q J, et al. Galvanic corrosion behavior of low alloy steel, stainless steel and Al-Mg alloy in simulated deep sea environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 417
|
|
张泽群, 陈质彬, 董其娟 等. 低合金钢、不锈钢和铝镁合金在模拟深海环境中的电偶腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 417
doi: 10.11902/1005.4537.2021.166
|
| 13 |
Liu Y X, Xu A Y. Characterization of pitting corrosion behavior of AZ91 Mg-alloy without and with MAO coating [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1034
|
|
刘玉项, 徐安阳. AZ91镁合金和MAO涂层的点蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 1034
doi: 10.11902/1005.4537.2021.320
|
| 14 |
Wan H X, Cai Y, Song D D, et al. Investigation of corrosion behavior of Mg-6Gd-3Y-0.4Zr alloy in Xisha atmospheric simulation solution [J]. Ocean Eng., 2020, 195: 106760
|
| 15 |
Cui Z Y, Ge F, Lin Y, et al. Corrosion behavior of AZ31 magnesium alloy in the chloride solution containing ammonium nitrate [J]. Electrochim. Acta, 2018, 278: 421
doi: 10.1016/j.electacta.2018.05.059
|
| 16 |
Bahmani A, Arthanari S, Shin K S. Improvement of corrosion resistance and mechanical properties of a magnesium alloy using screw rolling [J]. J. Alloy. Compd., 2020, 813: 152155
doi: 10.1016/j.jallcom.2019.152155
|
| 17 |
Gui Z Z, Kang Z X, Li Y Y. Mechanical and corrosion properties of Mg-Gd-Zn-Zr-Mn biodegradable alloy by hot extrusion [J]. J. Alloy. Compd., 2016, 685: 222
doi: 10.1016/j.jallcom.2016.05.241
|
| 18 |
Shuai C J, Yang Y W, Wu P, et al. Laser rapid solidification improves corrosion behavior of Mg-Zn-Zr alloy [J]. J. Alloy. Compd., 2017, 691: 961
doi: 10.1016/j.jallcom.2016.09.019
|
| 19 |
Zhang T, Shao Y W, Meng G Z, et al. Corrosion of hot extrusion AZ91 magnesium alloy: I-relation between the microstructure and corrosion behavior [J]. Corros. Sci., 2011, 53: 1960
doi: 10.1016/j.corsci.2011.02.015
|
| 20 |
Orlov D, Ralston K D, Birbilis N, et al. Enhanced corrosion resistance of Mg alloy ZK60 after processing by integrated extrusion and equal channel angular pressing [J]. Acta Mater., 2011, 59: 6176
doi: 10.1016/j.actamat.2011.06.033
|
| 21 |
Oktay G, ürgen M. Corrosion behaviour of magnesium AZ31 sheet produced by twin roll casting [J]. Corros. Eng. Sci. Technol., 2015, 50: 380
|
| 22 |
Chang T C, Wang J Y, O C M, et al. Grain refining of magnesium alloy AZ31 by rolling [J]. J. Mater. Process. Technol., 2003, 140: 588
doi: 10.1016/S0924-0136(03)00797-0
|
| 23 |
He J J, Mao Y, Lu S L, et al. Texture optimization on Mg sheets by preparing soft orientations of extension twinning for rolling [J]. Mater. Sci. Eng., 2019, 760A: 174
|
| 24 |
Bohlen J, Chmelík F, Dobroň P, et al. Orientation effects on acoustic emission during tensile deformation of hot rolled magnesium alloy AZ31 [J]. J. Alloy. Compd., 2004, 378: 207
doi: 10.1016/j.jallcom.2003.10.102
|
| 25 |
He J J, Jiang B, Yu X W, et al. Strain path dependence of texture and property evolutions on rolled Mg-Li-Al-Zn alloy possessed of an asymmetric texture [J]. J. Alloy. Compd., 2017, 698: 771
doi: 10.1016/j.jallcom.2016.12.205
|
| 26 |
Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals [J]. Phys. Rev., 1993, 47B: 558
|
| 27 |
Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Phys. Rev., 1999, 59B: 1758
|
| 28 |
Blöchl P E. Projector augmented-wave method [J]. Phys. Rev., 1994, 50B: 17953
|
| 29 |
Perdew J P, Zunger A. Self-interaction correction to density-functional approximations for many-electron systems [J]. Phys. Rev., 1981, 23B: 5048
|
| 30 |
Liu W, Li J C, Zheng W T, et al. Ni Al(110)/Cr(110) interface: A density functional theory study [J]. Phys. Rev., 2006, 73B: 205421
|
| 31 |
Song G L, Johannesson B, Hapugoda S, et al. Galvanic corrosion of magnesium alloy AZ91D in contact with an aluminium alloy, steel and zinc [J]. Corros. Sci., 2004, 46: 955
doi: 10.1016/S0010-938X(03)00190-2
|
| 32 |
Aung N N, Zhou W. Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy [J]. Corros. Sci., 2010, 52: 589
|
| 33 |
Wang Z, Li D Y, Yao Y Y, et al. Wettability, electron work function and corrosion behavior of CoCrFeMnNi high entropy alloy films [J]. Surf. Coat. Technol., 2020, 400: 126222
doi: 10.1016/j.surfcoat.2020.126222
|
| 34 |
Li W, Li D Y. Influence of surface morphology on corrosion and electronic behavior [J]. Acta Mater., 2006, 54: 445
doi: 10.1016/j.actamat.2005.09.017
|
| 35 |
Luo Z, Zhu H, Ying T, et al. First principles calculations on the influence of solute elements and chlorine adsorption on the anodic corrosion behavior of Mg (0001) surface [J]. Surf. Sci., 2018, 672/673: 68
|
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|