Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (1): 221-228    DOI: 10.11902/1005.4537.2023.055
Current Issue | Archive | Adv Search |
Effect of Rare Earth La on High Temperature Oxidation of Cobalt-based Superalloy GH5188 at 1100oC
WANG Shuang1,2, WANG Zixing2, CHENG Xiaonong1(), LUO Rui1
1.School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
2.Jiangsu Jicui Advanced Metal Materials Research Institute Co., Ltd., Suzhou 215500, China
Cite this article: 

WANG Shuang, WANG Zixing, CHENG Xiaonong, LUO Rui. Effect of Rare Earth La on High Temperature Oxidation of Cobalt-based Superalloy GH5188 at 1100oC. Journal of Chinese Society for Corrosion and protection, 2024, 44(1): 221-228.

Download:  HTML  PDF(15957KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The isothermal oxidation behavior of GH5188 superalloy at 1100oC was studied by means of intermittent weighting, SEM and XRD. The results show that the main components of the formed oxide scale are Cr2O3 and MnCr2O4. The oxidation behavior can be approximated by parabolic law. The addition of La can help the alloy to form a continuous, compact and stable oxide scale of Cr2O3, improve the adhesion between the oxide scale and the alloy matrix, therewith enhance the high temperature oxidation resistance of GH5188 superalloy. However, with the increase of La content, the high temperature oxidation resistance of the alloy will decrease, the high temperature oxidation resistance of GH5188 alloy can be improved effectively only by adding proper amount of La (0.029%-0.060%).

Key words:  cobalt base alloy      GH5188      high temperature oxidation      rare earth element     
Received:  01 March 2023      32134.14.1005.4537.2023.055
ZTFLH:  TG132.3  
Fund: State Key Lab of Advanced Metals and Materials(2022-Z21)
Corresponding Authors:  CHENG Xiaonong, E-mail: Chengxiaonong@hotmail.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.055     OR     https://www.jcscp.org/EN/Y2024/V44/I1/221

No.CrWNiMnLaFeCo
0#22.1014.8021.580.77230.0001.77Bal.
1#21.9414.4921.420.76070.0291.64Bal.
2#22.1114.5121.500.77140.0601.87Bal.
3#22.1314.4621.470.79230.5711.84Bal.
Table 1  Chemical compositions of GH5188 alloy samples with different contents of La
Fig.1  Oxidation kinetics curves of GH5188 alloy samples with different La contents at 1100oC
Fig.2  ΔW vs. t1/2 curves of 0# (a), 1# (b), 2# (c) and 3# (d) GH5188 alloy samples with different La contents
No.Kp / mg2·cm-4·h-1R2
0#0.0494330.98
1#0.0067890.98
2#0.0088750.95
3#0.0154830.99
Table 2  Oxidation rate constants and fitting correlation coefficients of GH5188 alloy samples with different La contents
Fig.3  XRD patterns of four alloy samples with different La contents after oxidation at 1100oC for 100 h
Fig.4  Macro morphologies of 0# (a), 1# (b), 2# (c) and 3# (d) alloy samples with different La contents after oxidation at 1100oC for 100 h
Fig.5  Surface morphologies of 0# (a), 1# (b), 2# (c) and 3# (d) alloy samples with different La contents after 25 h oxidation at 1100oC
Fig.6  Surface morphologies of 0# (a), 1# (b), 2# (c) and 3# (d) alloy samples with different La contents after 25 h oxidation at 1100oC
Fig.7  Cross-sectional morphologies and of 0# (a), 1# (b), 2# (c) and 3# (d, e) alloy samples with different La contents after 100 h oxidation at 1100oC
1 Huang Q Y, Li H K. High Temperature Alloys [M]. Beijing: Metallurgical Industry Press, 2000: 4
黄乾尧, 李汉康. 高温合金 [M]. 北京: 冶金工业出版社, 2000: 4
2 Sims C T, Hagel W C. The Superalloys [M]. New York: Wiley-Interscience, 1972: 145
3 Guo J T. Materials Science and Engineering for Superalloys [M]. Beijing: Science Press, 2010: 116
郭建亭. 高温合金材料学. 下册 [M]. 北京: 科学出版社, 2010: 116
4 Wang W J, Yu C, Pan B, et al. Advances in the oxidation behavior of nickel-based high-temperature alloys [J]. Mod. Metall., 2021, 49(1): 1
王伟娟, 喻 聪, 潘 斌 等. 镍基高温合金的氧化行为研究进展 [J]. 现代冶金, 2021, 49(1): 1
5 Lee J W, Kuo Y C. Cyclic oxidation behavior of a cobalt aluminide coating on Co-base superalloy AMS 5608 [J]. Surf. Coat. Technol., 2005, 200: 1225
doi: 10.1016/j.surfcoat.2005.07.082
6 Liu P S, Chen G F, Liang K M. High temperature oxidation of DZ40M alloy [J]. J. Chin. Soc. Corros. Prot., 1999, 19: 339
刘培生, 陈国锋, 梁开明. DZ40M钴基合金的高温氧化 [J]. 中国腐蚀与防护学报, 1999, 19: 339
7 Song Y, Yang H, Xiang Z Y, et al. Effect and role of rare earth elements on the thermal strength properties of nickel-based high temperature alloys [J]. China Met. Bull., 2018, (12): 104
宋 燕, 阳 辉, 向朝玉 等. 稀土元素对镍基高温合金热强性能的影响及作用 [J]. 中国金属通报, 2018, (12): 104
8 Ren Y J, Lv Y L, Dai T, et al. Oxidation behavior of ternary alloys Co-20Ni-3Al and Co-20Ni-5Al in 105 Pa O2 atmosphere at 800-1000oC [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 995
任延杰, 吕云蕾, 戴汀 等. 三元Co-Ni-Al合金在800~1000℃纯氧中的氧化行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 995
doi: 10.11902/1005.4537.2021.264
9 Zhang Q, Liang T S, Wang W, et al. Oxidation kinetics and microstructure evolution of nanocrystalline Ni-12Cr alloy at 800oC [J]. J. Chin. Soc. Corros. Prot., 202, 42: 733
张 勤, 梁涛沙, 王 文 等. 纳米晶Ni-12Cr合金800℃高温氧化动力学和氧化膜结构演化 [J]. 中国腐蚀与防护学报, 2022, 42: 733
10 Riffard F, Buscail H, Caudron E, et al. Yttrium addition effect on isothermal and cyclic high temperature oxidation behaviour of 304 stainless steel [J]. Surf. Eng., 2004, 20: 440
doi: 10.1179/174329404X7162
11 Zhang X K, Chen X M. Effect of rare earth element Ce on oxidation resistance of P92 steel [J]. Baosteel Technol., 2016, (2): 21
张小可, 陈锡民. 稀土元素Ce对P92耐热钢高温氧化行为的影响 [J]. 宝钢技术, 2016, (2): 21
12 Yu P, Wang Y Q, Wang W. Effect of reactive element yttrium on oxidation behavior of k38g superalloy at 800 ℃ in air [J]. Corros. Sci. Prot. Technol., 2006, 18: 183
于 萍, 王亚权, 王 文. 稀土元素Y对K38G高温合金800 ℃恒温氧化行为的影响 [J]. 腐蚀科学与防护技术, 2006, 18: 183
13 Pérez P. Influence of the alloy grain size on the oxidation behaviour of PM2000 alloy [J]. Corros. Sci., 2002, 44: 1793
14 Lou H Y, Wang F H, Xia B J, et al. High-temperature oxidation resistance of sputtered micro-grain superalloy K38G [J]. Oxid. Met., 1992, 38: 299
doi: 10.1007/BF00666917
15 Xu P Q, Tang X H, Yao S, et al. Effect of Y2O3 addition on microstructure of Ni-based alloy + Y2O3/substrate laser clad [J]. J. Mater. Process. Technol., 2008, 208: 549
16 Luo J B, Huang Y, Wang S, et al. Study on high temperature oxidation behavior of cast Fe-24Cr-32Ni steel modified by rare earth [J]. Foundry, 2023, 72: 22
罗杰斌, 黄 勇, 王 帅 等. 稀土改性铸造Fe-24Cr-32Ni型耐热钢高温氧化行为的研究 [J]. 铸造, 2023, 72: 22
17 Jiao J H, Li X, Liu Z Y. Effect of rare earth Ce on high temperature oxidation behavior of 310S austenitic heat-resistant stainless steel [J]. Heat Treat. Met., 2022, 47(1): 120
焦军红, 李 鑫, 刘振宇. 稀土Ce对310S奥氏体耐热不锈钢高温氧化行为的影响 [J]. 金属热处理, 2022, 47(1): 120
doi: 10.13251/j.issn.0254-6051.2022.01.020
18 Xiao X, Xu L, Qin X Z, et al. Effect of elements Y and Ce on high temperature oxidation behavior of directionally-solidified Ni-based superalloy [J]. Chin. J. Nonferrous Met., 2014, 24: 2769
肖 旋, 徐 乐, 秦学智 等. 稀土元素Y和Ce对定向凝固镍基高温合金高温氧化行为的影响 [J]. 中国有色金属学报, 2014, 24: 2769
19 Shi Z X, Liu S Z, Han M, et al. Influence of yttrium addition on high temperature oxidation resistance of single crystal superalloy [J]. J. Rare Earths, 2013, 31: 795
doi: 10.1016/S1002-0721(12)60360-3
20 Xie X, Wang X J, Xia T D. Effects of rare earth Y on oxidation resistance of Cr20Ni80 electrothermal alloy at high temperature [J]. Spec. Cast. Nonferrous Alloys, 2022, 42: 482
谢 霄, 王晓军, 夏天东. 稀土Y对Cr20Ni80电热合金高温抗氧化性的影响 [J]. 特种铸造及有色合金, 2022, 42: 482
21 Yu P, Wang Y Q. Oxidation behavior of K38G superalloy with 0.1mass% yttrium addition at 1000℃ in air [J]. Corros. Sci. Prot. Technol., 2007, 19: 189
于 萍, 王亚权. 添加 0.1mass% Y的K38G高温合金1000oC恒温氧化行为 [J]. 腐蚀科学与防护技术, 2007, 19: 189
22 Xu K D, Ren Z M, Li C J. Progress in application of rare metals in superalloys [J]. Rare Met., 2014, 33: 111
doi: 10.1007/s12598-014-0256-9
23 Song L G, Li S S, Zheng Y R, et al. Effect of yttrium on high temperature oxidation resistance of a directionally solidified superalloy [J]. J. Rare Earths, 2004, 22: 794
24 Whittle D P, Stringer J. Improvements in high temperature oxidation resistance by additions of reactive elements or oxide dispersions [J]. Philos. Trans. R. Soc. London Ser., 1980, 295A: 309
25 Yang D J, Shen Z S. Corrosion of Metals [M]. Beijing: Metallurgical Industry Press, 1999
杨德钧, 沈卓身. 金属腐蚀学 [M]. 北京: 冶金工业出版社, 1999
26 Liu P S, Liang K M, Gu S R, et al. Cyclic oxidation behavior of the aluminide coatings on the co-base superalloy DZ40M [J]. Rare Met. Mater. Eng., 2000, 29: 231
刘培生, 梁开明, 顾守仁 等. DZ40M钴基合金铝化物涂层的循环氧化 [J]. 稀有金属材料与工程, 2000, 29: 231
27 Yang Z, Lu J T, Zhao X B, et al. Effect of rare earth elements on high temperature oxidation of metals [J]. J. Chin. Rare Earths, 2014, 32: 641
杨 珍, 鲁金涛, 赵新宝 等. 稀土元素对合金高温氧化的影响 [J]. 中国稀土学报, 2014, 32: 641
28 Li M S, Zhang Y M. A review on effect of reactive elements on oxidation of metals [J]. Corros. Sci. Prot. Technol., 2001, 13: 333
李美栓, 张亚明. 活性元素对合金高温氧化的作用机制 [J]. 腐蚀科学与防护技术, 2001, 13: 333
29 Song X, Wang L, Liu Y, et al. Effects of temperature and rare earth content on oxidation resistance of Ni-based superalloy [J]. Prog. Nat. Sci. Mater. Int., 2011, 21: 227
doi: 10.1016/S1002-0071(12)60035-5
[1] FENG Kangkang, REN Yanjie, LV Yunlei, ZHOU Mengni, CHEN Jian, NIU Yan. Effect of Si Content on Oxidation Behavior of Quaternary Fe-20Ni-20Cr- ySi Alloys in Oxygen at 900oC[J]. 中国腐蚀与防护学报, 2024, 44(1): 100-106.
[2] REN Yan, ZHANG Xintao, GAI Xin, XU Jingjun, ZHANG Wei, CHEN Yong, LI Meishuan. High Temperature Oxidation Behavior of Quaternary (Cr2/3Ti1/3)3AlC2 MAX Ceramic in Air and Steam[J]. 中国腐蚀与防护学报, 2023, 43(6): 1284-1292.
[3] LIU Huanhuan, LIU Guangming, LI Futian, MENG Lingqi, XIAHOU Junzhao, GU Jialei. Oxidation Behavior of TP439 Stainless Steel in Water Vapor at 800 ℃[J]. 中国腐蚀与防护学报, 2023, 43(2): 377-383.
[4] REN Yanjie, LV Yunlei, DAI Ting, GUO Xiaohui, CHEN Jian, ZHOU Libo, QIU Wei, NIU Yan. Oxidation Behavior of Ternary Alloys Co-20Ni-3Al and Co-20Ni-5Al in 105 Pa O2 Atmosphere at 800-1000 ℃[J]. 中国腐蚀与防护学报, 2022, 42(6): 995-1001.
[5] XIE Leipeng, CHEN Minghui, WANG Jinlong, WANG Fuhui. High Temperature Oxidation Behavior of Ultrafine Grained ODS Nickel-based Superalloy Prepared by Spark Plasma Sintering[J]. 中国腐蚀与防护学报, 2022, 42(5): 709-716.
[6] PEI Shubo, WAN Dongyang, ZHOU Ping, CAO Guoqin, HU Junhua. Research Progress on Preparation, Microstructure, Oxidation- and Corrosion-resistance of High-entropy Alloy Coatings[J]. 中国腐蚀与防护学报, 2022, 42(5): 873-878.
[7] ZHANG Qin, LIANG Taosha, WANG Wen, ZHAO Langlang, JIANG Yuefeng. Oxidation Kinetics and Microstructure Evolution of Nanocrystalline Ni-12Cr Alloy at 800 ℃[J]. 中国腐蚀与防护学报, 2022, 42(5): 733-742.
[8] HUANG Lianpeng, ZHANG Xin, XIONG Yiming, TAO Jiahao, WANG Zehua, ZHOU Zehua. Corrosion Behavior of Al-3.0Mg-xRE/Fe Alloys Under Magnetic Field of Different Intensities[J]. 中国腐蚀与防护学报, 2022, 42(5): 833-838.
[9] QIU Panpan, SHU Xiaoyong, HU Linli, YANG Tao, FANG Yuqing. Research Progress of Pt-modified Aluminide Coating on Nickel-base Superalloys[J]. 中国腐蚀与防护学报, 2022, 42(2): 186-192.
[10] LI Ling, DU Xiran, QU Pinquan, LI Jiancheng, WANG Jinlong, GU Yan, ZHANG Jia, CHEN Minghui, WANG Fuhui. Effect of Vacuum Heat Treatment on Oxidation Behavior of Arc Ion Plated NiCoCrAlY Coatings[J]. 中国腐蚀与防护学报, 2022, 42(2): 243-248.
[11] YANG Sheng, ZHANG Huijie, XIANG Wuyuan, OUYANG Tao, XIAO Fen, ZHOU Hui. Effect of Post Surface Treatment of Micro-arc Oxidation Films/TC4 Ti-alloy on Their Morphology and Galvanic Corrosion Performance[J]. 中国腐蚀与防护学报, 2021, 41(6): 905-908.
[12] XIE Dongbai, HONG Hao, WANG Wen, PENG Xiao, DUO Shuwang. Oxidation Behavior of Stainless Steel 1Cr11Ni2W2MoV in a Simulated Kerosene Combustion Environment[J]. 中国腐蚀与防护学报, 2020, 40(4): 358-366.
[13] XU Xunhu,HE Cuiqun,XIANG Junhuai,WANG Ling,ZHANG Honghua,ZHENG Xiaodong. High Temperature Oxidation Behavior of Co-20Re-25Cr-1Si Alloy in 0.1 MPa Pure Oxygen[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[14] AI Peng,LIU Lixiang,LI Xiaogang,JIANG Wentao. Influence of TiAlSiN Coatings on High Temperature Oxidation Resistance of γ-TiAl Based Alloys[J]. 中国腐蚀与防护学报, 2019, 39(4): 306-312.
[15] Junjie XIA,Hongzhi NIU,Min LIU,Huazhen CAO,Guoqu ZHENG,Liankui WU. Enhancement of High Temperature Oxidation Resistance of Ti48Al5Nb Alloy via Anodic Anodization in NH4F Containing Ethylene Glycol[J]. 中国腐蚀与防护学报, 2019, 39(2): 96-105.
No Suggested Reading articles found!