Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (3): 647-655    DOI: 10.11902/1005.4537.2022.197
Current Issue | Archive | Adv Search |
Effect of Chemical Conversion Coatings Ca-P and Sr-P on Corrosion Resistance of Mg-Zn-Zr-Gd Alloy Cast After Solidifying by Pulsed Magnetic Field
MAO Xuncong, CHEN Leping(), PENG Cong
School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nannchang 330063, China
Download:  HTML  PDF(15707KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of chemical conversion coatings Ca-P and Sr-P on the corrosion resistance of Mg-Zn-Zr-Gd alloy, which was solidified by pulsed magnetic field and then cast, was studied by means of immersion test, electrochemical measurement, scanning electron microscopy and other methods. This investigation revealed that the corrosion resistance of the substrate sample, which was solidified by pulsed magnetic field, was better than that of the substrate sample, which was solidified without pulsed magnetic field, and the corrosion resistance of the substrate sample has a certain influence on the corrosion resistance of the coating, the better the corrosion resistance of the substrate sample, the better the corrosion resistance of the coating prepared on the surface. In addition, different chemical coatings have different corrosion resistance, the Ca-P coating was composed of a large number of rod-shaped particles, which were unevenly distributed and relatively loose, and the thickness was non uniform, the observation of corrosion morphology of the Ca-P coating showed that loose corrosion products with large number of voids were formed in the coating. The Sr-P coating was composed of many fine granular with uniform thickness, the corrosion products of the Sr-P coating were relatively dense, which hindered the possibility of further corrosion of the alloy. The results showed that both Sr-P and Ca-P coatings can improve the corrosion resistance of the substrate, and the corrosion resistance of the Sr-P coating was better than that of the Ca-P coating.

Key words:  Mg-Zn-Zr-Gd alloy      Sr-P coating      Ca-P coating      corrosion resistance     
Received:  15 June 2022      32134.14.1005.4537.2022.197
ZTFLH:  TG146.22  
Fund: Science and Technology Key R&D Project of Jiangxi Provincial(20212BBE53018);Department of Education Science and Technology Funding Project of Jiangxi Provincial(DA202103161)
Corresponding Authors:  CHEN Leping, E-mail: jnnclp@163.com

Cite this article: 

MAO Xuncong, CHEN Leping, PENG Cong. Effect of Chemical Conversion Coatings Ca-P and Sr-P on Corrosion Resistance of Mg-Zn-Zr-Gd Alloy Cast After Solidifying by Pulsed Magnetic Field. Journal of Chinese Society for Corrosion and protection, 2023, 43(3): 647-655.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.197     OR     https://www.jcscp.org/EN/Y2023/V43/I3/647

Fig.1  Original microstructure of alloy of untreated (a) and pulsed magnetic field treatment (b)
Fig.2  Effects of different treatment methods on the grain size and volume fraction of the second phase of the alloy
Fig.3  Microstructures of different coatings of the pulsed magnetic field treatment alloy Ca-P-M1 (a1, a2), Ca-P-M9 (b1, b2), Sr-P-M1 (c1, c2) and Sr-P-M9 (d1, d2)
ElementRegion ARegion B
Mg0.250.73
Zn0.661.97
P45.1251.34
Ca51.79-
Sr-44.75
Zr2.180.92
Table 1  Results of EDS analysis for the calibrated regions A and B in Fig.3
Fig.4  XRD pattern of Ca-P coating (a), and Sr-P coating (b)
Fig.5  Curve of dynamic potential polarization (pulse) of different coating
SampleEcorr / V vs SCEIcorr / A·cm-2
M1-1.704.25×10-6
M9-1.683.42×10-6
Ca-P-M1-1.282.35×10-6
Ca-P-M9-1.269.24×10-7
Sr-P-M1-1.491.45×10-8
Sr-P-M9-1.411.09×10-8
Table 2  Tafel fitting results of the dynamic potential polarization curve
Fig.6  Impedance spectral curve of the pulsed magnetic field processing specimen
Fig.7  Equivalent circuit diagrams of Ca-P (a) and Sr-P (b) coating
SampleRs / Ω·cm2Q-YoQ-nR1 / Ω·cm2Q-YoQ-nR2 / Ω·cm2R3 / Ω·cm2L
M134.233.551×10-50.4561.368×1021.226×1050.7494.007×1036.929×10329.03
M932.237.492×10-60.8273.555×1036.077×1050.3742.287×1021.173×1025.018
Ca-P-M110.667.238×10-70.9005.307×1032.736×1070.6811.165×10141.177×1032.570×103
Ca-P-M91.007×10-79.538×10-70.7997.803×1032.531×1080.8371.619×1031.450×10732.09
Sr-P-M11.929×10-47.737×10-90.9514.876×1046.082×1080.7946.948×105--
Sr-P-M97.064×10-52.819×10-80.8911.613×1051.289×1070.8299.811×105--
Table 3  Circuit fitting results of pulsed magnetic field processing of specimen impedance curves
Fig.8  Variation of the pH of the solution (a) and corrosion rate (b) of pulsed specimens soaked in Hank's solution for 7 d
Fig.9  Corrosion morphologies (a1, b1) and cross-sectional morphologies (a2, b2) of M1 (a1, a2) and M9 (b1, b2) matrix surfaces in Hank's solution for 7 d
Fig.10  Corrosion surface morphologies (a1-d1) and cross-sectional morphologies (a2-d2) of Ca-P-M1 (a1, a2), Ca-P-M9 (b1, b2), Sr-P-M1 (c1, c2) and Sr-P-M9 (d1, d2) coatings on different matrix surfaces in Hank's solution for 7 d
Fig.11  Schematic diagram of corrosion of different coatings on different matrix surfaces
1 Li H, Wen J B, He J G, et al. Current research status and prospect of Mg-Zn-Zr series bio-magnesium alloys [J]. Trans. Mater. Heat. Treat., 2019, 40(7): 1
李 欢, 文九巴, 贺俊光 等. Mg-Zn-Zr系生物镁合金研究现状及展望 [J]. 材料热处理学报, 2019, 40(7): 1
2 Yuan M H, Jiang B C, Tang L Y. Application and development of magnesium alloy in biomedicine [J]. Southern Agric. Mach., 2017, 48(23): 109
袁明华, 姜炳春, 唐联耀. 镁合金在生物医学上的应用与发展 [J]. 南方农机, 2017, 48(23): 109
3 Pan F S, Yang M B, Chen X H. A review on casting magnesium alloys: modification of commercial alloys and development of new alloys [J]. J. Mater. Sci. Technol., 2016, 32: 1211
doi: 10.1016/j.jmst.2016.07.001
4 Kim J K, Sandlöbes S, Raabe D. On the room temperature deformation mechanisms of a Mg-Y-Zn alloy with long-period-stacking-ordered structures [J]. Acta Mater., 2015, 82: 414
doi: 10.1016/j.actamat.2014.09.036
5 Chen K N, Guo C B. Research progress on biodegradable medical magnesium-based materials [J]. Int. J. Stomatol., 2021, 48: 322
陈克难, 郭传瑸. 可降解医用镁基金属生物材料的研究进展 [J]. 国际口腔医学杂志, 2021, 48: 322
6 Cui X J, Ping J. Research progress of microarc oxidation for corrosion prevention of Mg-alloys [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 87
崔学军, 平 静. 微弧氧化及其在镁合金腐蚀防护领域的研究进展 [J]. 中国腐蚀与防护学报, 2018, 38: 87
doi: 10.11902/1005.4537.2018.036
7 Li N, Zheng Y F. Novel magnesium alloys developed for biomedical application: a review [J]. J. Mater. Sci. Technol., 2013, 29: 489
doi: 10.1016/j.jmst.2013.02.005
8 Song Y W, Qiao Y. Research progress of corrosion resistance of degradable medical magnesium alloys [J]. Rare Meter. Mat. Eng., 2021, 50: 1482
宋玉玮, 乔 阳. 可降解医用镁合金耐腐蚀性能研究进展 [J]. 稀有金属材料与工程, 2021, 50: 1482
9 Chen K, Zhang X B, Dai J W, et al. Enhanced mechanical and corrosion properties of NZ20K alloy by double extrusion and aging processes for biomedical applications [J]. Mater. Technol., 2016, 31: 210
doi: 10.1179/1753555715Y.0000000043
10 Li L Y, Cui L Y, Zeng R C, et al. Advances in functionalized polymer coatings on biodegradable magnesium alloys-A review [J]. Acta Biomater., 2018, 79: 23
doi: 10.1016/j.actbio.2018.08.030
11 Yang L H, Li J Q, Jiang W W, et al. Current status of surface treatment for magnesium alloy [J]. J. Chin. Soc. Corros. Prot., 2008, 28: 316
杨黎晖, 李峻青, 姜巍巍 等. 镁合金表面处理技术的研究进展 [J]. 中国腐蚀与防护学报, 2008, 28: 316
12 Muhaffel F, Cimenoglu H. Development of corrosion and wear resistant micro-arc oxidation coating on a magnesium alloy [J]. Surf. Coat. Technol., 2019, 357: 822
doi: 10.1016/j.surfcoat.2018.10.089
13 Zhou L L, Yi D Q, Deng S H, et al. A new environment-friendly anodizing process for magnesium alloys [J]. J. Chin. Soc. Corros. Prot., 2006, 26: 3176
周玲伶, 易丹青, 邓姝皓 等. 镁合金环保型阳极氧化工艺研究 [J]. 中国腐蚀与防护学报, 2006, 26: 3176
14 Xia K D, Pan H, Wang T L, et al. Effect of Ca/P ratio on the structural and corrosion properties of biomimetic Ca-P coatings on ZK60 magnesium alloy [J]. Mater. Sci. Eng., 2017, 72C: 676
15 Chen X B, Nisbet D R, Li R W, et al. Controlling initial biodegradation of magnesium by a biocompatible strontium phosphate conversion coating [J]. Acta Biomater., 2014, 10: 1463
doi: 10.1016/j.actbio.2013.11.016 pmid: 24291328
16 Cui X J, Dai X, Zheng B Y, et al. Effect of KH-550 content on structure and properties of a Micro-arc oxidation coating on Mg-alloy AZ31B [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 227
崔学军, 代 鑫, 郑冰玉 等. KH-550对AZ31B镁合金表面微弧氧化膜结构及性能的影响 [J]. 中国腐蚀与防护学报, 2017, 37: 227
doi: 10.11902/1005.4537.2016.016
17 Shen X X, Sheng J W, Xu Q J, et al. Fabrication of Ca-P coating on AZ31 magnesium by electrochemical-assisted chemical conversion and evaluation of its corrosion resistance [J]. Mater. Prot., 2018, 51(5): 18
沈喜训, 盛俊威, 徐群杰 等. 镁合金表面Ca-P涂层的电化学辅助化学转化法制备及其耐蚀性研究 [J]. 材料保护, 2018, 51(5): 18
18 Jiang S T, Zeng X A, Ma Y C. Fabrication of Ca-P coating of Mg-Zn-Zr alloy and corrosion resistance [J]. J. Tianjin Univ. Technol., 2014, 30(6): 7
姜舒婷, 曾晓爱, 马玉春. Mg-Zn-Zr表面Ca-P涂层的制备及其降解性能研究 [J]. 天津理工大学学报, 2014, 30(6): 7
19 Chen J X. Study on properties and surface modification of biodegradable Mg-2Zn-xRE (Gd, Nd, Y)- 0.5Zr alloys [D]. Hefei: University of Science and Technology of China, 2019
陈军修. 生物可降解Mg-2Zn-xRE (Gd、Nd、Y)- 0.5Zr合金性能及其表面改性研究 [D]. 合肥: 中国科学技术大学, 2019
20 Wang J Q, Wang X. In vivo study of strontium-doped calcium phosphate cement for biological properties [J]. J. Peking Univ. (Health Sci.), 2021, 53: 378
王京旗, 王 霄. 掺锶磷酸钙骨水泥材料生物学性能的动物实验 [J]. 北京大学学报 (医学版), 2021, 53: 378
21 Huang Y, Yan Y J, Pang X F, et al. Bioactivity and corrosion properties of gelatin-containing and strontium-doped calcium phosphate composite coating [J]. Appl. Surf. Sci., 2013, 282: 583
doi: 10.1016/j.apsusc.2013.06.015
22 Li M, Yang X M, Lin X, et al. Effects of SrCaP-coated Mg alloy ZK60 on preosteoblast functions in mice [J]. Chin Orthop. J. Clin. Basic Res., 2013, 5: 40
李 梅, 杨小明, 林 潇 等. 含SrCaP涂层镁合金ZK60对小鼠前成骨细胞功能的影响 [J]. 中国骨科临床与基础研究杂志, 2013, 5: 40
23 Chen J X, Tan L L, Yu X M, et al. Effect of minor content of Gd on the mechanical and degradable properties of as-cast Mg-2Zn-xGd-0.5Zr alloys [J]. J. Mater. Sci. Technol., 2019, 35: 503
doi: 10.1016/j.jmst.2018.10.022
24 Zhang T, Li Y, Wang F. Roles of β phase in the corrosion process of AZ91D magnesium alloy [J]. Corros. Sci., 2006, 48: 1249
doi: 10.1016/j.corsci.2005.05.011
25 Song D, Ma A B, Jiang J H, et al. Corrosion behaviour of bulk ultra-fine grained AZ91D magnesium alloy fabricated by equal-channel angular pressing [J]. Corros. Sci., 2011, 53: 362
doi: 10.1016/j.corsci.2010.09.044
26 Kubásek J, Vojtěch D. Structural and corrosion characterization of biodegradable Mg-RE (RE=Gd, Y, Nd) alloys [J]. Trans. Nonferrous Met. Soc. China., 2013, 23: 1215
doi: 10.1016/S1003-6326(13)62586-8
27 Chen J X, Lu S H, Tan L L, et al. Comparative study on effects of different coatings on biodegradable and wear properties of Mg-2Zn-1Gd-0.5Zr alloy [J]. Surf. Coat. Technol., 2018, 352: 273
doi: 10.1016/j.surfcoat.2018.08.028
28 Shangguan Y M, Sun L N, Wan P, et al. Comparison study of different coatings on degradation performance and cell response of Mg-Sr alloy [J]. Mater. Sci. Eng., 2016, 69C: 95
29 Zhao C Y, Pan F S, Zhang L, et al. Microstructure, mechanical properties, bio-corrosion properties and cytotoxicity of as-extruded Mg-Sr alloys [J]. Mater. Sci. Eng., 2017, 70C: 1081
[1] SHANG Ting, JIANG Guangrui, LIU Guanghui, QIN Hancheng. Effect of Heat Treatment Process on Microstructure and Corrosion Resistance of Zn-6%Al-3%Mg Coating[J]. 中国腐蚀与防护学报, 2023, 43(6): 1413-1418.
[2] XIAO Wentao, LIU Jing, PENG Jingjing, ZHANG Xian, WU Kaiming. Corrosion Resistance of Two Arc Spraying Coatings on EH36 Steel in Neutral Salt Spray Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1003-1014.
[3] YANG Haifeng, YUAN Zhizhong, LI Jian, ZHOU Naipeng, GAO Feng. Effect of Ni Content on Corrosion Behavior of Cu-bearing Aged Weldable Steels in a Simulated Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2023, 43(5): 1022-1030.
[4] CHEN Xiaohan, BAI Yang, WANG Zhichao, CHEN Congzong, ZHANG Yong, CUI Xianlin, ZUO Juanjuan, WANG Tongliang. Preparation and Corrosion Resistance of Surface Tolerant Epoxy Anti-corrosion Primer[J]. 中国腐蚀与防护学报, 2023, 43(5): 1126-1132.
[5] DING Li, ZOU Wenjie, ZHANG Xuejiao, CHEN Jun. Silicon-Zirconium Composite Conversion Film on ADC12 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 903-910.
[6] LIU Chao, CHEN Tianqi, LI Xiaogang. Research Progress on Initiation Mechanism of Local Corrosion Induced by Inclusions in Low Alloy Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
[7] ZOU Wenjie, DING Li, ZHANG Xuejiao, CHEN Jun. Epoxy/Organosiloxane Modified Cationic Acrylic Emulsion Composite Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 922-928.
[8] XIAO Meng, WANG Qinying, ZHANG Xingshou, XI Yuchen, BAI Shulin, DONG Lijin, ZHANG Jin, YANG Junjie. Effect of Laser Quenching on Microstructure, Corrosion and Wear Behavior of AISI 4130 Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 713-724.
[9] WU Duoli, WU Haotian, SUN Hui, SHI Jianjun, WEI Xinlong, ZHANG Chao. Research Status and Development of Laser Cladding High Temperature Protective Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 725-736.
[10] WU Jiahao, WU Liang, YAO Wenhui, YUAN Yuan, XIE Zhihui, WANG Jingfeng, PAN Fusheng. Properties of Layered Dihydroxyl Metal (MgAlLa) Oxide Composite Coatings on Different Micro-arc Oxidation Surfaces of Mg-Gd-Y-Zn-Mn Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 693-703.
[11] NI Ya, SHI Fangchang, QI Jiqiu. Effect of Ce on Microstructure and Corrosion Resistance of Zn-0.6Cu-0.3Ti Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 803-811.
[12] HU Qian, GAO Jiayi, GUO Ruisheng, SHI Junqin, WANG Xianzong. Long-term Corrosion of Lubricant Infused Surface with Micro-nano Structures on Anodized Aluminum Oxide[J]. 中国腐蚀与防护学报, 2023, 43(4): 773-780.
[13] HU Yunfei, CAO Xiangkang, MA Xiaoze, PAN Jinglong, CAI Guangyi, DONG Zehua. Fluorescent Nanofiller Modified Epoxy Coatings for Visualization of Coating Degradation[J]. 中国腐蚀与防护学报, 2023, 43(3): 460-470.
[14] WANG Hanmin, HUANG Feng, YUAN Wei, ZHANG Jiawei, WANG Xinyu, LIU Jing. Corrosion Behavior of a Novel Cu-Mo Weathering Steel in an Artificial Marine Atmosphere[J]. 中国腐蚀与防护学报, 2023, 43(3): 507-515.
[15] ZHANG Ergeng, YANG Lei, YANG Hu, LIANG Dandan, CHEN Qiang, ZHOU Qiong, HUANG Biao. Review on Research and Optimization of Corrosion Resistance of Thermal Sprayed Fe-based Amorphous Coatings[J]. 中国腐蚀与防护学报, 2023, 43(2): 399-407.
No Suggested Reading articles found!