Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (3): 656-662    DOI: 10.11902/1005.4537.2022.195
Current Issue | Archive | Adv Search |
Effect of Heat Treatments on Corrosion Behavior of 3Cr Low Carbon Steel
XIA Xiaojian1, WAN Xinyuan1, CHEN Yunxiang1, HAN Jiceng1, CHEN Yiyang1, YAN Kanghua1, LIN Deyuan1, CHEN Tianpeng2, ZUO Xiaomei3, SUN Baozhuang3, CHENG Xuequn3()
1.State Grid Fujian Electric Power Research Institute, Fuzhou 350003, China
2.State Grid Putian Electric Power Supply Company, Putian 351100, China
3.Corrosion Protection Center, University of Sciences and Technology Beijing, Beijing 100083, China
Download:  HTML  PDF(13167KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of heat treatments on the corrosion behavior of low carbon steels with 3%Cr (mass fraction) in Cl- containing environment was assessed by means of immersion test, electrochemical measurements, scanning Kelvin probe (SKP), and atomic force microscope (AFM). Results show that annealing leads to single ferrite microstructure, and normalizing causes duplex microstructure consisting of ferrite and bainite. The microstructure difference is the intrinsic reason for the corrosion morphology difference in the initial corrosion stage. In the contrast to the microstructure of annealed steel, the existence of two phases in the normalized microstructure causes galvanic effect, which then resulted in lower corrosion resistance of the steel.

Key words:  low carbon steel      heat treatment      microstructure      micro-electrochemistry     
Received:  14 June 2022      32134.14.1005.4537.2022.195
ZTFLH:  TG172.3  
Fund: Science and Technology Project of State Grid Fujian Electric Company(52130421N003)
Corresponding Authors:  CHENG Xuequn, E-mail: chengxuequn@ustb.edu.cn

Cite this article: 

XIA Xiaojian, WAN Xinyuan, CHEN Yunxiang, HAN Jiceng, CHEN Yiyang, YAN Kanghua, LIN Deyuan, CHEN Tianpeng, ZUO Xiaomei, SUN Baozhuang, CHENG Xuequn. Effect of Heat Treatments on Corrosion Behavior of 3Cr Low Carbon Steel. Journal of Chinese Society for Corrosion and protection, 2023, 43(3): 656-662.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.195     OR     https://www.jcscp.org/EN/Y2023/V43/I3/656

Fig.1  Schematic diagram of the heat treatment process of the test steel
Fig.2  Schematic diagram of SKP scanning area
Fig.3  Metallographic structures of 3Cr steel under different heat treatment conditions: (a) annealed sample, (b) normalized sample
Fig.4  EBSD characterization of 3Cr steel under different heat treatment conditions: (a) annealed microstructure, (b) normalized microstructure, (c) annealed misorientation angle analysis, (d) normalized misorientation angle analysis
Fig.5  Surface corrosion micro-morphologies of 3Cr steel samples after immersion for 2 d (a, c) and 20 d (b, d) under annealed (a, b) and normalized (c, d) conditions
Fig.6  Microstructures (a, c) and 3D profile (b, d) of corrosion products removed from 3Cr steel after immersion for 20 d under annealed (a, b) and normalized (c, d) conditions
Fig.7  Nyquist (a, d), impedance module (b, e) and phase angle (c, f) plots of annealed (a-c) and normalized (d-f) samples after soaking in 0.5%NaCl (pH 3) solution for different time
Fig.8  Equivalent circuit diagram of EIS
Fig.9  Rct change curves of two heat-treated samples after immersion for different time
Fig.10  SKP potential distribution of the normalized/annealed coupled sample before (a) and after (b) immersion for 30 min
Fig.11  Morphologies (a1, b1), potentials (a2, b2) and the potential change dagrams of the contour line position (a3, b3) of 3Cr steel samples under annealed (a1-a3) and normalized (b1-b3) conditions
1 Hou B R, Li X G, Ma X M, et al. The cost of corrosion in China [J]. npj Mater. Degrad., 2017, 1: 4
doi: 10.1038/s41529-017-0005-2
2 Li X G, Zhang D W, Liu Z Y, et al. Materials science: Share corrosion data [J]. Nature, 2015, 527: 441
doi: 10.1038/527441a
3 Sun B Z, Liu Z Y, He Y D, et al. A new study for healing pitting defects of 316L stainless steel based on microarc technology [J]. Corros. Sci., 2021, 187: 109505
doi: 10.1016/j.corsci.2021.109505
4 Wu W, Dai Z Y, Liu Z Y, et al. Synergy of Cu and Sb to enhance the resistance of 3%Ni weathering steel to marine atmospheric corrosion [J]. Corros. Sci., 2021, 183: 109353
doi: 10.1016/j.corsci.2021.109353
5 Tewary N K, Kundu A, Nandi R, et al. Microstructural characterisation and corrosion performance of old railway girder bridge steel and modern weathering structural steel [J]. Corros. Sci., 2016, 113: 57
doi: 10.1016/j.corsci.2016.10.004
6 Morcillo M, Díaz I, Cano H, et al. Atmospheric corrosion of weathering steels. Overview for engineers. Part I: Basic concepts [J]. Constr. Build. Mater., 2019, 213: 723
doi: 10.1016/j.conbuildmat.2019.03.334
7 Morcillo M, Díaz I, Cano H, et al. Atmospheric corrosion of weathering steels. Overview for engineers. Part II: Testing, inspection, maintenance [J]. Constr. Build. Mater., 2019, 222: 750
doi: 10.1016/j.conbuildmat.2019.06.155
8 Sun B Z, Zuo X M, Cheng X Q, et al. The role of chromium content in the long-term atmospheric corrosion process [J]. npj Mater. Degrad., 2020, 4: 37
doi: 10.1038/s41529-020-00142-5
9 Sun M H, Du C W, Liu Z Y, et al. Fundamental understanding on the effect of Cr on corrosion resistance of weathering steel in simulated tropical marine atmosphere [J]. Corros. Sci., 2021, 186: 109427
doi: 10.1016/j.corsci.2021.109427
10 Palraj S, Selvaraj M, Maruthan K, et al. Kinetics of atmospheric corrosion of mild steel in marine and rural environments [J]. J. Mar. Sci. Appl., 2015, 14: 105
doi: 10.1007/s11804-015-1286-x
11 Morcillo M, Chico B, Díaz I, et al. Atmospheric corrosion data of weathering steels. A review [J]. Corros. Sci., 2013, 77: 6
doi: 10.1016/j.corsci.2013.08.021
12 Cheng X Q, Jin Z, Liu M, et al. Optimizing the nickel content in weathering steels to enhance their corrosion resistance in acidic atmospheres [J]. Corros. Sci., 2017, 115: 135
doi: 10.1016/j.corsci.2016.11.016
13 Cheng X Q, Wang Y, Dong C F, et al. The beneficial galvanic effect of the constituent phases in 2205 duplex stainless steel on the passive films formed in a 3.5% NaCl solution [J]. Corros. Sci., 2018, 134: 122
doi: 10.1016/j.corsci.2018.02.033
14 Pan Y, Song L F, Liu Z Y, et al. Effect of hydrogen charging on SCC of 2205 duplex stainless steel with varying microstructures in simulated deep-sea environment [J]. Corros. Sci., 2022, 196: 110026
doi: 10.1016/j.corsci.2021.110026
15 Liu Z Y, Li X G, Cheng Y F. In-situ characterization of the electrochemistry of grain and grain boundary of an X70 steel in a near-neutral pH solution [J]. Electrochem. Commun., 2010, 12: 936
doi: 10.1016/j.elecom.2010.04.025
16 Wu W, Cheng X Q, Hou H X, et al. Insight into the product film formed on Ni-advanced weathering steel in a tropical marine atmosphere [J]. Appl. Surf. Sci., 2018, 436: 80
doi: 10.1016/j.apsusc.2017.12.018
17 Cano H, Neff D, Morcillo M, et al. Characterization of corrosion products formed on Ni 2.4wt%-Cu 0.5wt%-Cr 0.5wt% weathering steel exposed in marine atmospheres [J]. Corros. Sci., 2014, 87: 438
doi: 10.1016/j.corsci.2014.07.011
18 Yang Y, Cheng X Q, Zhao J B, et al. A study of rust layer of low alloy structural steel containing 0.1%Sb in atmospheric environment of the Yellow Sea in China [J]. Corros. Sci., 2021, 188: 109549
doi: 10.1016/j.corsci.2021.109549
19 Pei Z B, Zhang D W, Zhi Y J, et al. Towards understanding and prediction of atmospheric corrosion of an Fe/Cu corrosion sensor via machine learning [J]. Corros. Sci., 2020, 170: 108697
doi: 10.1016/j.corsci.2020.108697
20 Li S P, Guo J, Yang S W, et al. Effect of carbon content and microstructure on the corrosion resistance of low alloy steels [J]. J. Univ. Sci. Technol. Beijing, 2008, 30: 16
李少坡, 郭 佳, 杨善武 等. 碳含量和组织类型对低合金钢耐蚀性的影响 [J]. 北京科技大学学报, 2008, 30: 16
21 Guo J, Yang S W, Shang C J, et al. Incubation and development of atmospheric corrosion in the microstructures of low alloy steels [J]. J. Univ. Sci. Technol. Beijing, 2009, 31: 848
郭 佳, 杨善武, 尚成嘉 等. 大气腐蚀在低合金钢显微组织中的发生与发展 [J]. 北京科技大学学报, 2009, 31: 848
22 Wang Z F, Wu L X, Sun Y Q, et al. The Effect of the microstructure on the corrosion resistance of Bainitic steel [J]. Phys. Examinat. Test., 2011, 29(4): 37
王志奋, 吴立新, 孙宜强 等. 组织结构对贝氏体钢的耐腐蚀性能影响 [J]. 物理测试, 2011, 29(4): 37
23 Wang L W, Du C W, Liu Z Y, et al. Influences of Fe3C and pearlite on the electrochemical corrosion behaviors of low carbon ferrite steel [J]. Acta Metall. Sin., 2011, 47: 1227
doi: 10.3724/SP.J.1037.2011.00198
王力伟, 杜翠薇, 刘智勇 等. Fe3C和珠光体对低碳铁素体钢腐蚀电化学行为的影响 [J]. 金属学报, 2011, 47: 1227
doi: 10.3724/SP.J.1037.2011.00198
24 Moreto J A, Marino C E B, Bose Filho W W, et al. SVET, SKP and EIS study of the corrosion behaviour of high strength Al and Al-Li alloys used in aircraft fabrication [J]. Corros. Sci., 2014, 84: 30
doi: 10.1016/j.corsci.2014.03.001
25 Yang S H, Zhao Y J, Li L S, et al. Application of micro area electrochemical scanning technology [J]. Nonferrous Met. Sci. Eng., 2017, 8(3): 29
杨少华, 赵宇娟, 李林山 等. 微区电化学扫描技术应用现状 [J]. 有色金属科学与工程, 2017, 8(3): 29
26 Xu D, Yang X J, Li Q, et al. Review on corrosion test methods and evaluation techniques for materials in atmospheric environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 447
徐 迪, 杨小佳, 李 清 等. 材料大气环境腐蚀试验方法与评价技术进展 [J]. 中国腐蚀与防护学报, 2022, 42: 447
27 Zhao Q Y, Fan E D, Zhao J B, et al. Improved stress corrosion cracking resistance of high-strength low-alloy steel in a simulated deep-sea environment via Nb microalloying [J]. Steel Res. Int., 2021, 92: 5
28 Sun B Z, Liao W J, Li Z, et al. Corrosion behavior of X65 pipeline steel in coastal areas [J]. Anti-Corros. Methods Mater., 2019, 66: 286
doi: 10.1108/ACMM-06-2018-1953
29 Cheng P, Liu J, Huang F, et al. Corrosion behavior of 690 MPa weathering bridge steel in simulated industrial atmosphere [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 563
程 鹏, 刘 静, 黄 峰 等. 690 MPa级耐候桥梁钢在模拟工业大气环境下的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 563
[1] LIAO Minxing, LIU Jun, DONG Baojun, LENG Xuesong, CAI Zelun, WU Junwei, HE Jianchao. Effect of Salt Spray Environment on Performance of 1Cr18Ni9Ti Brazed Joint[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[2] SHANG Ting, JIANG Guangrui, LIU Guanghui, QIN Hancheng. Effect of Heat Treatment Process on Microstructure and Corrosion Resistance of Zn-6%Al-3%Mg Coating[J]. 中国腐蚀与防护学报, 2023, 43(6): 1413-1418.
[3] ZHONG Jiaxin, GUAN Lei, LI Yu, HUANG Jiayong, SHI Lei. Effect of Second Phase on Corrosion Behavior of Friction-stir-welded Joints of 2xxx Series Al-alloy[J]. 中国腐蚀与防护学报, 2023, 43(6): 1247-1254.
[4] SHANG Qiang, MAN Cheng, PANG Kun, CUI Zhongyu, DONG Chaofang, CUI Hongzhi. Mechanism of Post-heat Treatment on Intergranular Corrosion Behavior of SLM-316L Stainless Steel with Different Carbon Contents[J]. 中国腐蚀与防护学报, 2023, 43(6): 1273-1283.
[5] LUO Weihua, WANG Haitao, YU Lin, XU Shi, LIU Zhaoxin, GUO Yu, WANG Tingyong. Effect of Zn Content on Electrochemical Properties of Al-Zn-In-Mg Sacrificial Anode Alloy[J]. 中国腐蚀与防护学报, 2023, 43(5): 1071-1078.
[6] LI Tianyu, WANG Weikang, LI Yangtao, BAO Tengfei, ZHAO Mengfan, SHEN Xinxin, NI Lei, MA Qinglei, TIAN Huiwen. Corrosion Failure Mechanism of Ultra-high-performance Concretes Prepared with Sea Water and Sea Sand in an Artificial Sea Water Containing Sulfate[J]. 中国腐蚀与防护学报, 2023, 43(5): 1101-1110.
[7] XIAO Meng, WANG Qinying, ZHANG Xingshou, XI Yuchen, BAI Shulin, DONG Lijin, ZHANG Jin, YANG Junjie. Effect of Laser Quenching on Microstructure, Corrosion and Wear Behavior of AISI 4130 Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 713-724.
[8] LIANG Chaoxiong, LIANG Xiaohong, HAN Peide. Effect of a New Heat Treatment Process on B Elements Distribution, Second Phase Precipitation and Corrosion Resistance of S31254 Super Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 639-646.
[9] ZHANG Quanfu, SONG Lei, WANG Jian, GUO Zhenyu, REN Naidong, ZHAO Jianqi, WU Weikang, CHENG Weili. Mechanical Properties and Corrosion Behavior of an Extruded Dilute Mg-alloy Mg-0.5Bi-0.5Sn-0.5Ca[J]. 中国腐蚀与防护学报, 2023, 43(2): 428-434.
[10] ZHANG Ergeng, YANG Lei, YANG Hu, LIANG Dandan, CHEN Qiang, ZHOU Qiong, HUANG Biao. Review on Research and Optimization of Corrosion Resistance of Thermal Sprayed Fe-based Amorphous Coatings[J]. 中国腐蚀与防护学报, 2023, 43(2): 399-407.
[11] LV Xin, DENG Kunkun, WANG Cuiju, NIE Kaibo, SHI Quanxin, LIANG Wei. Effect of SiCp Size on Microstructure and Corrosion Properties of Cast AZ91 Mg-alloys[J]. 中国腐蚀与防护学报, 2023, 43(1): 135-142.
[12] ZHANG Jiahuan, CUI Zhongyu, FAN Lin, SUN Mingxian. Effect of Heat Treatment Process on Corrosion Resistance of Ti6321 Alloy[J]. 中国腐蚀与防护学报, 2023, 43(1): 152-158.
[13] XUE Fang, LIU Liangyu, TAN Long. Aerobic Corrosion Process of Q235 Steel in NaHCO3 Solutions[J]. 中国腐蚀与防护学报, 2022, 42(5): 771-778.
[14] PAN Xin, REN Ze, LIAN Jingbao, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Heat Treatment Process on Corrosion Behavior of Super 13Cr Stainless Steel in CO2-Saturated Oilfield Formation Aqueous Solution[J]. 中国腐蚀与防护学报, 2022, 42(5): 752-758.
[15] WANG Jiaqi, LI Li, LIU Tingting. Corrosion Behavior of Al-Mn Alloys for Industrial Building Roof[J]. 中国腐蚀与防护学报, 2022, 42(4): 693-698.
No Suggested Reading articles found!