Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (2): 337-344    DOI: 10.11902/1005.4537.2022.117
Current Issue | Archive | Adv Search |
Distribution of Relaxation Time of Polydimethylsiloxane Coatings During Self-healing Process
WANG Tong, WANG Wei()
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
Download:  HTML  PDF(6079KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Traditional electrochemical analysis techniques cannot fully reflect the electrochemical process of organic coating corrosion. Hence, distribution of relaxation time (DRT) technique was adopted to fit the electrochemical impedance spectrum (EIS), meanwhile, the distribution of relaxation time of the long-term anticorrosion process of polydimethylsiloxane coatings without and with artificial scratches was investigated, in other word, the later one experienced self-healing cycles. The results show that the function of the EIS itself as a whole and the contribution proportion of each element of the EIS of the coating during the corrosion process can be clearly analyzed via the DRT technique combined with equivalent circuit model analysis. Meanwhile, the corresponding relaxation time of each element in EIS equivalent circuit was discussed theoretically. This paper provides a new analytical technique for corrosion electrochemical mechanism study.

Key words:  organic coating      electrochemical impedance spectroscopy      distribution of relaxation time      equivalent circuit      mechanism      self-healing     
Received:  18 April 2022      32134.14.1005.4537.2022.117
ZTFLH:  TG174  
Fund: Supported by National Natural Science Foundation of China(42076039)
About author:  WANG Wei, E-mail: wangwei8038@ouc.edu.cn

Cite this article: 

WANG Tong, WANG Wei. Distribution of Relaxation Time of Polydimethylsiloxane Coatings During Self-healing Process. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 337-344.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.117     OR     https://www.jcscp.org/EN/Y2023/V43/I2/337

Fig.1  Synthesis route of PDMS coating
Fig.2  FT-IR spectra of reactants and reaction products during the synthesis of PDMS coating
Fig.3  SEM image of PDMS coating
Fig.4  LCSM images showing self-healing process of PDMS coating: (a) original surface, (b) scratched surface, (c) heat-treated surface at 60 ℃
Fig.5  Nyquist (a) and Bode (b) plots of PDMS coating in long-term anticorrosion process
Fig.6  Equivalent circuit model of PDMS coating in long-term anticorrosion process
Fig.7  DRT plots of PDMS coating in long-term anticorrosion process: (a) 1 d, (b) 10 d, (c) 90 d
Time / dτ1τ2τ3
140.66%36.22%23.11%
1039.05%28.44%32.51%
9012.48%52.74%34.78%
Table1  DRT analysis of time constant area ration for PDMS coating in long-term anticorrosion process
Fig.8  Nyquist (a, c) and Bode (b, d) plots of PDMS coating in scratch and self-healing cyclic process (Hn and Sn denote the nth self-healing and scratch, respectively)
Fig.9  Equivalent circuit models of PDMS coating in the cyclic process of self-healing (a) and scratch (b)
Fig.10  DRT plots of PDMS coating after each self-healing: (a) H1, (b) H2, (c) H3
Fig.11  DRT plots of PDMS coating after each scratched: (a) S1, (b) S2, (c) S3
Number of self-headingτ1τ3
H194.96%5.00%
H292.32%7.68%
H395.57%4.43%
Table 2  DRT analysis of time constant area ration for PDMS coating after each self-healing
Number of scratchesτ1τ2τ3
S115.79%16.73%66.47%
S213.09%19.61%67.30%
S315.95%17.69%66.36%
Table 3  DRT analysis of time constant area ration for PDMS coating after each scratched
[1] Ye Y W, Liu Z Y, Liu W, et al. Superhydrophobic oligoaniline-containing electroactive silica coating as pre-process coating for corrosion protection of carbon steel [J]. Chem. Eng. J., 2018, 348: 940
doi: 10.1016/j.cej.2018.02.053
[2] Hou B R, Li X G, Ma X M, et al. The cost of corrosion in China [J]. npj Mater. Degrad., 2017, 1: 4
doi: 10.1038/s41529-017-0005-2
[3] Yu C T, Yang Y F, Bao Z B, et al. Research progress in preparation and development of excellent bond coats for a dvanced thermal barrier coatings [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 395
(余春堂, 阳颖飞, 鲍泽斌 等. 先进高温热障涂层用高性能粘接层制备及研究进展 [J]. 中国腐蚀与防护学报, 2019, 39: 395)
[4] Zhang X H, Zhou Z K, Xu Q J, et al. Anti-corrosion performance of nickel-rich conductive coatings in simulated seawater [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 189
(张心华, 周仲康, 徐群杰 等. 富镍导电涂层在模拟海水中的耐蚀性能研究 [J]. 中国腐蚀与防护学报, 2017, 37: 189)
[5] Wang Q, Wang W, Ji X H, et al. Self-healing coatings containing core-shell nanofibers with ph-responsive performance [J]. ACS Appl. Mater. Interfaces, 2021, 13: 3139
doi: 10.1021/acsami.0c18933
[6] Zhang Y, Fan W J, Zhang T F, et al. Review of Intelligent Self-healing coatings [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 299
(张勇, 樊伟杰, 张泰峰 等. 涂层自修复技术研究进展 [J]. 中国腐蚀与防护学报, 2019, 39: 299)
[7] Liu X X, Yu J S, Gao Y, et al. Effect of APTES modified montmorillonite on protective property of hybrid sol-gel coating on Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 464
(刘煊煊, 于金山, 高燕 等. APTES改性蒙脱土对镁合金表面杂化溶胶-凝胶涂层防护性能的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 464)
[8] Gao H D, Cui Y, Liu L, et al. Influence of simulated deep sea pressured-flowing seawater on failure behavior of epoxy glass flake coating [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 39
(高浩东, 崔宇, 刘莉 等. 深海压力-流速耦合环境对环氧玻璃鳞片涂层失效行为的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 39)
[9] Cao J Y, Wang Z Q, Li L, et al. Failure mechanism of organic coating with modified graphene under simulated deep-sea alternating hydrostatic pressure [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 139
(曹京宜, 王智峤, 李亮 等. 深海压力交变加速条件下改性石墨烯有机涂层的失效机制 [J]. 中国腐蚀与防护学报, 2020, 40: 139)
[10] Cao L, Wang W, Li Q Y, et al. Three-dimensional nanofibers network multifunctional material for photothermal self-healing protective coating [J]. Chem. Eng. J., 2022, 440: 134943
doi: 10.1016/j.cej.2022.134943
[11] Ji X H, Wang W, Zhao X, et al. Poly (dimethyl siloxane) anti-corrosion coating with wide pH-responsive and self-healing performance based on core-shell nanofiber containers [J]. J. Mater. Sci. Technol., 2022, 101: 128
doi: 10.1016/j.jmst.2021.06.014
[12] Danzer M A. Generalized distribution of relaxation times analysis for the characterization of impedance spectra [J]. Batteries, 2019, 5: 53
doi: 10.3390/batteries5030053
[13] Schichlein H, Müller A C, Voigts M, et al. Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells [J]. J. Appl. Electrochem., 2002, 32: 875
doi: 10.1023/A:1020599525160
[14] Sabet P S, Sauer D U. Separation of predominant processes in electrochemical impedance spectra of lithium-ion batteries with nickel-manganese-cobalt cathodes [J]. J. Power Sources, 2019, 425: 121
doi: 10.1016/j.jpowsour.2019.03.068
[15] Sheng C C, Yu F J, Li C M, et al. Diagnosing the SEI layer in a potassium ion battery using distribution of relaxation time [J]. J. Phys. Chem. Lett., 2021, 12: 2064
doi: 10.1021/acs.jpclett.1c00118 pmid: 33617250
[16] Ciucci F, Chen C. Analysis of electrochemical impedance spectroscopy data using the distribution of relaxation times: A Bayesian and hierarchical bayesian approach [J]. Electrochim. Acta, 2015, 167: 439
doi: 10.1016/j.electacta.2015.03.123
[17] Wang J, Huang Q A, Li W H, et al. Fundamentals of distribution of relaxation times for electrochemical impedance spectroscopy [J]. J. Electrochem., 2020, 26: 607
doi: 10.13208/j.electrochem.200641
(王佳, 黄秋安, 李伟恒 等. 电化学阻抗谱弛豫时间分布基础 [J]. 电化学, 2020, 26: 607)
doi: 10.13208/j.electrochem.200641
[18] Clematis D, Ferrari T, Bertei A, et al. On the stabilization and extension of the distribution of relaxation times analysis [J]. Electrochim. Acta, 2021, 391: 138916
doi: 10.1016/j.electacta.2021.138916
[19] Huang J, Papac M, O'Hayre R. Towards robust autonomous impedance spectroscopy analysis: A calibrated hierarchical Bayesian approach for electrochemical impedance spectroscopy (EIS) inversion [J]. Electrochim. Acta, 2021, 367: 137493
doi: 10.1016/j.electacta.2020.137493
[20] Yang M S, Sun Y H, Chen G M, et al. Preparation of a self-healing silicone coating for inhibiting adhesion of benthic diatoms [J]. Mater. Lett., 2020, 268: 127496
doi: 10.1016/j.matlet.2020.127496
[21] Cao C N. Principles of Electrochemistry of Corrosion [M]. 3rd ed. Beijng: Chemical Industry Press, 2008: 188
(曹楚南. 腐蚀电化学原理 [M]. 3版. 北京: 化学工业出版社, 2008: 188)
[1] ZHAO Lu, LI Qian, ZHAO Tianliang. Corrosion Behavior and Sealing Technologies of Bronze[J]. 中国腐蚀与防护学报, 2023, 43(6): 1165-1177.
[2] YU Chenjun, ZHANG Tianyi, ZHANG Naiqiang, ZHU Zhongliang. Influence of Thermal Aging on Corrosion Behavior of Ferritic-martensitic Steel P92 in Supercritical Water[J]. 中国腐蚀与防护学报, 2023, 43(6): 1349-1357.
[3] WANG Hua, WANG Yingjie, LIU Enze. Hot Corrosion Behavior of New Type Co-Al-W Superalloys with Different Ni Contents[J]. 中国腐蚀与防护学报, 2023, 43(6): 1419-1426.
[4] LI Tianyu, WANG Weikang, LI Yangtao, BAO Tengfei, ZHAO Mengfan, SHEN Xinxin, NI Lei, MA Qinglei, TIAN Huiwen. Corrosion Failure Mechanism of Ultra-high-performance Concretes Prepared with Sea Water and Sea Sand in an Artificial Sea Water Containing Sulfate[J]. 中国腐蚀与防护学报, 2023, 43(5): 1101-1110.
[5] ZHOU Hao, YOU Shijie, WANG Shengli. Corrosion Behavior and Corrosion Inhibitor for Copper Artifacts in CO2 Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1049-1056.
[6] LI Haiyan, LIU Huan, WANG Geyi, ZHANG Xiuju, CHEN Tongzhou, YU Yun, YAO Hong. Review on Erosion-wear and Protection of Heat Exchange Surface in Power Station Boilers[J]. 中国腐蚀与防护学报, 2023, 43(5): 957-970.
[7] HU Jiezhen, SHANGGUAN Juyu, DENG Peichang, FENG Qilan, WANG Gui, WANG Peilin. Effect of Barnacle Adhesion on Corrosion Behavior of Q235 Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1145-1150.
[8] CHEN Huimin, WANG Shuaixing, ZHANG Qi, ZHAN Zhongwei, DU Nan. Electrodeposition Behavior of Silver in an Alkaline DMH Plating Bath with 5,5-Dimethylhydantoin as Complexing Agent[J]. 中国腐蚀与防护学报, 2023, 43(4): 896-902.
[9] MENG Fandi, GAO Haodong, LIU Li, CUI Yu, LIU Rui, WANG Fuhui. Preparation and Anticorrosive Performance of a Basalt Organic Coating for Deep Sea Coupled Pressure-fluid Environment[J]. 中国腐蚀与防护学报, 2023, 43(4): 704-712.
[10] DENG Chengman, LIU Zhe, XIA Da-Hai, HU Wenbin. Localized Corrosion Mechanism of 5083-H111 Al Alloy in Simulated Dynamic Seawater Zone[J]. 中国腐蚀与防护学报, 2023, 43(4): 683-692.
[11] LIU Ming, WANG Jie, ZHU Chunhui, ZHANG Yanxiao. Electrochemical Corrosion Behavior of 3D-printed NiTi Shape Memory Alloy in a Simulated Oral Environment[J]. 中国腐蚀与防护学报, 2023, 43(4): 781-786.
[12] ZHOU Zhiping, WU Dakang, ZHANG Hongfu, ZHANG Lei, LI Mingxing, ZHANG Zhixin, ZHONG Xiankang. Tensile Property of L80 Steel in Air at 25-350 ℃ and Its Corrosion Behavior in Simulated Casing Service Conditions at 150-350 ℃[J]. 中国腐蚀与防护学报, 2023, 43(3): 601-610.
[13] WANG Jin, NING Peidong, LIU Qianqian, CHEN Nana, ZHANG Xin, XIAO Kui. Corrosion Behavior of Galvanized Steel in a Simulated Marine Atmospheric Environment[J]. 中国腐蚀与防护学报, 2023, 43(3): 578-586.
[14] ZHANG Quanfu, SONG Lei, WANG Jian, GUO Zhenyu, REN Naidong, ZHAO Jianqi, WU Weikang, CHENG Weili. Mechanical Properties and Corrosion Behavior of an Extruded Dilute Mg-alloy Mg-0.5Bi-0.5Sn-0.5Ca[J]. 中国腐蚀与防护学报, 2023, 43(2): 428-434.
[15] YUAN Shicheng, WU Yanfeng, XU Changhui, WANG Xingqi, LENG Zhe, YANG Yange. Influence of Polyhydroxy Hyperdispersant on Anti-corrosion Property of Waterborne Epoxy Coatings[J]. 中国腐蚀与防护学报, 2023, 43(2): 289-300.
No Suggested Reading articles found!