|
|
Effect of Synergy of Water Pressure and Flow Speed on Free-corrosion Behavior of Al-Zn-In Sacrificial Anode in Deep-sea Envioronmem |
ZHANG Rui1, CUI Yu2, LIU Li1( ), WANG Fuhui1 |
1.Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China 2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
|
|
Abstract The effect of synergy of water pressure and water flow on the free-corrosion behavior of Al-Zn-In alloy, a common Al-based sacrificial anode material, was studied via a home-made test set for regulating water pressure and flow rate aiming to simulate the deep-sea environment. The results show that both the water pressure and water flow could promote the free-corrosion of the Al-Zn-In sacrificial alloy. The effect of the water flow is obviously greater than that of water pressure. Under high water pressure, the diameter and depth of the corrosion pits increased. By high water flow rate, the number of pits increased significantly, and the electrochemical reaction resistance decreased. In addition, the erosion effect of flowing water on the alloy substrate may enhance the falling-off process of grains from the alloy. Generally, the free-corrosion of Al-Zn-In sacrificial alloy is significantly enhanced in the presence of synergetic effect of electrochemical corrosion and water erosion.
|
Received: 04 March 2022
32134.14.1005.4537.2022.056
|
|
Fund: National Natural Science Foundation of China(U20b2026) |
About author: LIU Li, E-mail: liuli@mail.neu.edu.cn
|
[1] |
Wang X L, Yu Q, Wang Y. Research status of deep sea materials and corrosion protection technology [J]. Total Corros. Control, 2018, 32(10): 80
|
|
(王勋龙, 于青, 王燕. 深海材料及腐蚀防护技术研究现状 [J]. 全面腐蚀控制, 2018, 32(10): 80)
|
[2] |
Liu Y, Liu L, Li Y, et al. Effect of high hydrostatic pressure on diffusing behavior of water through epoxy coating [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 203
|
|
(刘樱, 刘莉, 李瑛 等. 高静水压力对水在环氧涂层中传输行为的影响 [J]. 中国腐蚀与防护学报, 2012, 32: 203)
|
[3] |
Zhou J L, Li X G, Cheng X Q, et al. Research progress on corrosion of metallic materials in deep sea environment [J]. Corros. Sci. Prot. Technol., 2010, 22: 47
|
|
(周建龙, 李晓刚, 程学群 等. 深海环境下金属及合金材料腐蚀研究进展 [J]. 腐蚀科学与防护技术, 2010, 22: 47)
|
[4] |
Li C J, Du M. Research and development of cathodic protection for steels in deep seawater [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 10
|
|
(李成杰, 杜敏. 深海钢铁材料的阴极保护技术研究及发展 [J]. 中国腐蚀与防护学报, 2013, 33: 10)
|
[5] |
Sun M X, Ma L, Zhang H B, et al. Research progress in aluminum alloy sacrificial anode materials [J]. Equip. Environ. Eng., 2018, 15(3): 9
|
|
(孙明先, 马力, 张海兵 等. 铝合金牺牲阳极材料的研究进展 [J]. 装备环境工程, 2018, 15(3): 9)
|
[6] |
Zhang G Q, Qian S C, Zhang Y H, et al. Electrochemical properties of Al-Zn-In aluminum alloy sacrificial anodes [J]. Equip. Environ. Eng., 2019, 16(8): 1
|
|
(张国庆, 钱思成, 张有慧 等. Al-Zn-In系铝合金牺牲阳极电化学性能研究 [J]. 装备环境工程, 2019, 16(8): 1)
|
[7] |
Zhang W Y, Wang X Y, Xi L J, et al. Research progress of sacrificial anode materials in cathodic protection technology [J]. Corros. Sci. Prot. Technol., 2013, 25: 420
|
|
(张万友, 王鑫焱, 郗丽娟 等. 阴极保护技术中牺牲阳极材料的研究进展 [J]. 腐蚀科学与防护技术, 2013, 25: 420)
|
[8] |
Cao P, Zhou T T, Bai X Q, et al. Research progress on corrosion and protection in deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 12
|
|
(曹攀, 周婷婷, 白秀琴 等. 深海环境中的材料腐蚀与防护研究进展 [J]. 中国腐蚀与防护学报, 2015, 35: 12)
|
[9] |
Sun H J, Qin M, Li L. Performance of Al-Zn-In-Mg-Ti sacrificial anode in simulated low dissolved oxygen deep water environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 508
|
|
(孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究 [J]. 中国腐蚀与防护学报, 2020, 40: 508)
|
[10] |
Hu S N, Zhang T, Shao Y W, et al. Effect of cyclic hydrostatic pressure on sacrificial anode cathodic protection [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 241
|
|
(胡胜楠, 张涛, 邵亚薇 等. 循环静水压力对牺牲阳极阴极保护的影响 [J]. 中国腐蚀与防护学报, 2012, 32: 241)
|
[11] |
Liu Y W, Zhang Y. Numerical analysis of flow-accelerated corrosion of a hull in the marine environment [J]. J. Harbin Eng. Univ., 2021, 42: 145
|
|
(刘英伟, 张洋. 船体在海水中流动加速腐蚀数值分析 [J]. 哈尔滨工程大学学报, 2021, 42: 145)
|
[12] |
Choe S B, Lee S J. Effect of flow rate on electrochemical characteristics of marine material under seawater environment [J]. Ocean Eng., 2017, 141: 18
doi: 10.1016/j.oceaneng.2017.05.035
|
[13] |
Zhu J, Zhang Q B, Chen Y, et al. Progress of study on erosion-corrosion [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 199
|
|
(朱娟, 张乔斌, 陈宇 等. 冲刷腐蚀的研究现状 [J]. 中国腐蚀与防护学报, 2014, 34: 199)
|
[14] |
Zhang Y H, Zhang L, Yi G H, et al. Influence of temperature on performance of Al-Zn-In-Mg-Ti sacrificial anode in dynamic seawater [J]. Corros. Prot., 2013, 34: 471
|
|
(张有慧, 张林, 易桂虎 等. 动态海水温度对Al-Zn-In-Mg-Ti牺牲阳极性能的影响 [J]. 腐蚀与防护, 2013, 34: 471)
|
[15] |
Li H, Wei B, Xu Z B, et al. Effect of Er on microstructure and electrochemical performance of Al-Zn-In anode [J]. Rare Met. Mater. Eng., 2016, 45: 1848
|
|
(李航, 魏兵, 许征兵 等. Er对Al-Zn-In合金组织和电化学性能的影响 [J]. 稀有金属材料与工程, 2016, 45: 1848)
|
[16] |
Sun H J, Liu L, Li Y, et al. The performance of Al-Zn-In-Mg-Ti sacrificial anode in simulated deep water environment [J]. Corros. Sci., 2013, 77: 77
doi: 10.1016/j.corsci.2013.07.029
|
[17] |
Ma J L, Wen J B, Zhai W X, et al. In situ corrosion analysis of Al-Zn-In-Mg-Ti-Ce sacrificial anode alloy [J]. Mater. Charact., 2012, 65: 86
doi: 10.1016/j.matchar.2012.01.003
|
[18] |
Khireche S, Boughrara D, Kadri A, et al. Corrosion mechanism of Al, Al-Zn and Al-Zn-Sn alloys in 3wt.%NaCl solution [J]. Corros. Sci., 2014, 87: 504
doi: 10.1016/j.corsci.2014.07.018
|
[19] |
Ma J L, Wen J B, Lu X W, et al. Electrochemical impedance spectroscopy of aluminum alloy anode during corrosion process [J]. Corros. Prot., 2009, 30: 373
|
|
(马景灵, 文九巴, 卢现稳 等. 铝合金阳极腐蚀过程的电化学阻抗谱研究 [J]. 腐蚀与防护, 2009, 30: 373)
|
[20] |
Qi G T, Xiong W, Zhu W T. Effect of segregation on initiation of corrosion of aluminium sacrificial anode containing mischmetal [J]. Corros. Eng. Sci. Technol., 2011, 46: 458
doi: 10.1179/147842209X12476568584377
|
[21] |
Ma J L, Wen J B, Li G X, et al. The corrosion behaviour of Al-Zn-In-Mg-Ti alloy in NaCl solution [J]. Corros. Sci., 2010, 52: 534
doi: 10.1016/j.corsci.2009.10.010
|
[22] |
Xiong W, Qi G T, Guo X P, et al. Anodic dissolution of Al sacrificial anodes in NaCl solution containing Ce [J]. Corros. Sci., 2011, 53: 1298
doi: 10.1016/j.corsci.2011.01.001
|
[23] |
Pourgharibshahi M, Meratian M. Corrosion morphology of aluminium sacrificial anodes [J]. Mater. Corros., 2014, 65: 1188
|
[24] |
He J G, Wen J B, Li X D. Effects of precipitates on the electrochemical performance of Al sacrificial anode [J]. Corros. Sci., 2011, 53: 1948
doi: 10.1016/j.corsci.2011.02.016
|
[25] |
Cao C N. Principles of Electrochemistry of Corrosion [M]. 3rd ed. Beijing: Chemical Industry Press, 2008
|
|
(曹楚南. 腐蚀电化学原理 [M]. 第3版. 北京: 化学工业出版社, 2008)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|