Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (2): 329-336    DOI: 10.11902/1005.4537.2022.056
Current Issue | Archive | Adv Search |
Effect of Synergy of Water Pressure and Flow Speed on Free-corrosion Behavior of Al-Zn-In Sacrificial Anode in Deep-sea Envioronmem
ZHANG Rui1, CUI Yu2, LIU Li1(), WANG Fuhui1
1.Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(12073KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of synergy of water pressure and water flow on the free-corrosion behavior of Al-Zn-In alloy, a common Al-based sacrificial anode material, was studied via a home-made test set for regulating water pressure and flow rate aiming to simulate the deep-sea environment. The results show that both the water pressure and water flow could promote the free-corrosion of the Al-Zn-In sacrificial alloy. The effect of the water flow is obviously greater than that of water pressure. Under high water pressure, the diameter and depth of the corrosion pits increased. By high water flow rate, the number of pits increased significantly, and the electrochemical reaction resistance decreased. In addition, the erosion effect of flowing water on the alloy substrate may enhance the falling-off process of grains from the alloy. Generally, the free-corrosion of Al-Zn-In sacrificial alloy is significantly enhanced in the presence of synergetic effect of electrochemical corrosion and water erosion.

Key words:  hydrostatic pressure      flow      sacrificial anode      self-corrosion     
Received:  04 March 2022      32134.14.1005.4537.2022.056
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(U20b2026)
About author:  LIU Li, E-mail: liuli@mail.neu.edu.cn

Cite this article: 

ZHANG Rui, CUI Yu, LIU Li, WANG Fuhui. Effect of Synergy of Water Pressure and Flow Speed on Free-corrosion Behavior of Al-Zn-In Sacrificial Anode in Deep-sea Envioronmem. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 329-336.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.056     OR     https://www.jcscp.org/EN/Y2023/V43/I2/329

Fig.1  Microstructure (a) and XRD patterns (b) of Al-Zn-In sacrificial anode alloy samples used in the experiment
Fig.2  Micromorphologies of unetched Al-Zn-In alloy samples after polishing (a) and the magnified image of area in Fig.2a (b) and surface EDS analysis results of points A, B, C in Fig.2a and b
Fig.3  Self-corrosion mass loss of Al-Zn-In in different conditions
Fig.4  Nyquist (a) and Bode (b) plots and equivalent circuit diagram corresponding to EIS data (c) of Al-Zn-In sacrificial anode self-corrosion for 48 h at different conditions
ConditionsW / Ω·cm2Rs / Ω·cm2CPE1 / μF·cm-2n1R1 / Ω·cm2CPE2 / μF·cm-2n2R2 / Ω·cm2R0 / Ω·cm2L / H·cm2χ2 / 10-4
10 MPa, 3 m/s0.0514.882157.70.72615.77572.40.757204167.562.533.36
0.1 MPa, 3 m/s0.0586.0971870.7278.582394.20.816248.9168.7117.52.76
10 MPa, 0 m/s---6.7921100.7936.265187.50.859305.3164.31762.39
0.1 MPa, 0 m/s---8.47990.640.8085.134193.20.857335.6189.2158.52.25
Table 1  Fitting results of the EIS for the self-corrosion of Al-Zn-In after 48 h of immersion
Fig.5  Macroscopic morphologies of corrosion products removed after Al-Zn-In sacrificial anode immersion for 1 h in different conditions: (a) 0.1 MPa, 0 m/s; (b) 10 MPa, 0 m/s; (c) 0.1 MPa, 3 m/s; (d) 10 MPa, 3 m/s
Fig.6  Backscattering morphologies (a-d, e-h) and surface EDS analysis results (b1-b3, d1-d3, f1-f3, h1-h3) of Al-Zn-In sacrificial anodes self-corrosion for 1 h under static conditions with 0.1 MPa, 0 m/s (a,b, b1-b3) and 100 MPa, 0 m/s (c, d, d1-d3) and dynamic conditions with 0.1 MPa 3 m/s (e, f, f1-f3) and 10 MPa, 3 m/s (g, h, h1-h3)
Fig.7  Microscopic morphologies of corrosion products removed after Al-Zn-In sacrificial anode immersion for 120 h in different conditions: (a) 0.1 MPa, 0 m/s; (b) 10 MPa, 0 m/s; (c) 0.1 MPa, 3 m/s and (d) 10 MPa, 3 m/s
Fig.8  Backscattered electron image of Al-Zn-In sacrificial anode corrosion for 120 h in different conditions: (a, b) 0.1 MPa, 0 m/s;(c, d) 10 MPa, 0 m/s; (e, f) 0.1 MPa, 3 m/s; (g, h) 10 MPa, 3 m/s
Fig.9  Schematic diagram for the self-corrosion dissolution process of Al-Zn-In sacrificial anode in 3.5%NaCl solution. Initiation (a) and propagation (b) of localized corrosion on the surface
[1] Wang X L, Yu Q, Wang Y. Research status of deep sea materials and corrosion protection technology [J]. Total Corros. Control, 2018, 32(10): 80
(王勋龙, 于青, 王燕. 深海材料及腐蚀防护技术研究现状 [J]. 全面腐蚀控制, 2018, 32(10): 80)
[2] Liu Y, Liu L, Li Y, et al. Effect of high hydrostatic pressure on diffusing behavior of water through epoxy coating [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 203
(刘樱, 刘莉, 李瑛 等. 高静水压力对水在环氧涂层中传输行为的影响 [J]. 中国腐蚀与防护学报, 2012, 32: 203)
[3] Zhou J L, Li X G, Cheng X Q, et al. Research progress on corrosion of metallic materials in deep sea environment [J]. Corros. Sci. Prot. Technol., 2010, 22: 47
(周建龙, 李晓刚, 程学群 等. 深海环境下金属及合金材料腐蚀研究进展 [J]. 腐蚀科学与防护技术, 2010, 22: 47)
[4] Li C J, Du M. Research and development of cathodic protection for steels in deep seawater [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 10
(李成杰, 杜敏. 深海钢铁材料的阴极保护技术研究及发展 [J]. 中国腐蚀与防护学报, 2013, 33: 10)
[5] Sun M X, Ma L, Zhang H B, et al. Research progress in aluminum alloy sacrificial anode materials [J]. Equip. Environ. Eng., 2018, 15(3): 9
(孙明先, 马力, 张海兵 等. 铝合金牺牲阳极材料的研究进展 [J]. 装备环境工程, 2018, 15(3): 9)
[6] Zhang G Q, Qian S C, Zhang Y H, et al. Electrochemical properties of Al-Zn-In aluminum alloy sacrificial anodes [J]. Equip. Environ. Eng., 2019, 16(8): 1
(张国庆, 钱思成, 张有慧 等. Al-Zn-In系铝合金牺牲阳极电化学性能研究 [J]. 装备环境工程, 2019, 16(8): 1)
[7] Zhang W Y, Wang X Y, Xi L J, et al. Research progress of sacrificial anode materials in cathodic protection technology [J]. Corros. Sci. Prot. Technol., 2013, 25: 420
(张万友, 王鑫焱, 郗丽娟 等. 阴极保护技术中牺牲阳极材料的研究进展 [J]. 腐蚀科学与防护技术, 2013, 25: 420)
[8] Cao P, Zhou T T, Bai X Q, et al. Research progress on corrosion and protection in deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 12
(曹攀, 周婷婷, 白秀琴 等. 深海环境中的材料腐蚀与防护研究进展 [J]. 中国腐蚀与防护学报, 2015, 35: 12)
[9] Sun H J, Qin M, Li L. Performance of Al-Zn-In-Mg-Ti sacrificial anode in simulated low dissolved oxygen deep water environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 508
(孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究 [J]. 中国腐蚀与防护学报, 2020, 40: 508)
[10] Hu S N, Zhang T, Shao Y W, et al. Effect of cyclic hydrostatic pressure on sacrificial anode cathodic protection [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 241
(胡胜楠, 张涛, 邵亚薇 等. 循环静水压力对牺牲阳极阴极保护的影响 [J]. 中国腐蚀与防护学报, 2012, 32: 241)
[11] Liu Y W, Zhang Y. Numerical analysis of flow-accelerated corrosion of a hull in the marine environment [J]. J. Harbin Eng. Univ., 2021, 42: 145
(刘英伟, 张洋. 船体在海水中流动加速腐蚀数值分析 [J]. 哈尔滨工程大学学报, 2021, 42: 145)
[12] Choe S B, Lee S J. Effect of flow rate on electrochemical characteristics of marine material under seawater environment [J]. Ocean Eng., 2017, 141: 18
doi: 10.1016/j.oceaneng.2017.05.035
[13] Zhu J, Zhang Q B, Chen Y, et al. Progress of study on erosion-corrosion [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 199
(朱娟, 张乔斌, 陈宇 等. 冲刷腐蚀的研究现状 [J]. 中国腐蚀与防护学报, 2014, 34: 199)
[14] Zhang Y H, Zhang L, Yi G H, et al. Influence of temperature on performance of Al-Zn-In-Mg-Ti sacrificial anode in dynamic seawater [J]. Corros. Prot., 2013, 34: 471
(张有慧, 张林, 易桂虎 等. 动态海水温度对Al-Zn-In-Mg-Ti牺牲阳极性能的影响 [J]. 腐蚀与防护, 2013, 34: 471)
[15] Li H, Wei B, Xu Z B, et al. Effect of Er on microstructure and electrochemical performance of Al-Zn-In anode [J]. Rare Met. Mater. Eng., 2016, 45: 1848
(李航, 魏兵, 许征兵 等. Er对Al-Zn-In合金组织和电化学性能的影响 [J]. 稀有金属材料与工程, 2016, 45: 1848)
[16] Sun H J, Liu L, Li Y, et al. The performance of Al-Zn-In-Mg-Ti sacrificial anode in simulated deep water environment [J]. Corros. Sci., 2013, 77: 77
doi: 10.1016/j.corsci.2013.07.029
[17] Ma J L, Wen J B, Zhai W X, et al. In situ corrosion analysis of Al-Zn-In-Mg-Ti-Ce sacrificial anode alloy [J]. Mater. Charact., 2012, 65: 86
doi: 10.1016/j.matchar.2012.01.003
[18] Khireche S, Boughrara D, Kadri A, et al. Corrosion mechanism of Al, Al-Zn and Al-Zn-Sn alloys in 3wt.%NaCl solution [J]. Corros. Sci., 2014, 87: 504
doi: 10.1016/j.corsci.2014.07.018
[19] Ma J L, Wen J B, Lu X W, et al. Electrochemical impedance spectroscopy of aluminum alloy anode during corrosion process [J]. Corros. Prot., 2009, 30: 373
(马景灵, 文九巴, 卢现稳 等. 铝合金阳极腐蚀过程的电化学阻抗谱研究 [J]. 腐蚀与防护, 2009, 30: 373)
[20] Qi G T, Xiong W, Zhu W T. Effect of segregation on initiation of corrosion of aluminium sacrificial anode containing mischmetal [J]. Corros. Eng. Sci. Technol., 2011, 46: 458
doi: 10.1179/147842209X12476568584377
[21] Ma J L, Wen J B, Li G X, et al. The corrosion behaviour of Al-Zn-In-Mg-Ti alloy in NaCl solution [J]. Corros. Sci., 2010, 52: 534
doi: 10.1016/j.corsci.2009.10.010
[22] Xiong W, Qi G T, Guo X P, et al. Anodic dissolution of Al sacrificial anodes in NaCl solution containing Ce [J]. Corros. Sci., 2011, 53: 1298
doi: 10.1016/j.corsci.2011.01.001
[23] Pourgharibshahi M, Meratian M. Corrosion morphology of aluminium sacrificial anodes [J]. Mater. Corros., 2014, 65: 1188
[24] He J G, Wen J B, Li X D. Effects of precipitates on the electrochemical performance of Al sacrificial anode [J]. Corros. Sci., 2011, 53: 1948
doi: 10.1016/j.corsci.2011.02.016
[25] Cao C N. Principles of Electrochemistry of Corrosion [M]. 3rd ed. Beijing: Chemical Industry Press, 2008
(曹楚南. 腐蚀电化学原理 [M]. 第3版. 北京: 化学工业出版社, 2008)
[1] XING Shaohua, LIU Zhongye, LIU Jinzeng, BAI Shuyu, QIAN Yao, ZHANG Dalei. Galvanic Corrosion Behavior of ZCuSn5Pb5Zn5/B10 Couple in Flowing Seawater[J]. 中国腐蚀与防护学报, 2023, 43(6): 1339-1348.
[2] LUO Weihua, WANG Haitao, YU Lin, XU Shi, LIU Zhaoxin, GUO Yu, WANG Tingyong. Effect of Zn Content on Electrochemical Properties of Al-Zn-In-Mg Sacrificial Anode Alloy[J]. 中国腐蚀与防护学报, 2023, 43(5): 1071-1078.
[3] PAN Dailong, SI Xiaodong, LV Jinhong. Effect of Flow Velocity on Flow Accelerated Corrosion Rate of Carbon Steel Elbow[J]. 中国腐蚀与防护学报, 2023, 43(5): 1064-1070.
[4] LI Qiang, LU Cheng, TANG Yinghao, TANG Jianfeng, LIU Bingcheng. Localized CO2 Corrosion of X70 Steel in Water Accumulation Zone of Wet Gas Pipelines[J]. 中国腐蚀与防护学报, 2023, 43(4): 837-846.
[5] XING Shaohua, LIU Jinzeng, BAI Shuyu, QIAN Yao, ZHANG Dalei, MA Li. Influence of Seawater Flow Speed on Galvanic Corrosion Behavior of B10/B30 Alloys Coupling[J]. 中国腐蚀与防护学报, 2023, 43(2): 391-398.
[6] LIU Jinzeng, XING Shaohua, QIAN Yao, ZHANG Dalei, MA Li. Galvanic Corrosion Behavior of 20# Steel/Tin Bronze Couple in Flowing Seawater[J]. 中国腐蚀与防护学报, 2023, 43(1): 127-134.
[7] DONG Zhiyong, XU Xuyi, LI Yuhang. Effect of Sand Grain Size on Cavitation Erosion of Concrete Induced by High Velocity Sand Carrying Water Flow[J]. 中国腐蚀与防护学报, 2023, 43(1): 166-172.
[8] LIU Dong, LIU Jing, HUANG Feng, DU Liying. Corrosion Fatigue Crack Propagation Performance of DH36 Steel in Simulated Service Conditions for Offshore Engineering Structures[J]. 中国腐蚀与防护学报, 2022, 42(6): 959-965.
[9] CHEN Hanlin, MA Li, HUANG Guosheng, DU Min. Effect of Dissolved Oxygen and Flow Rate of Seawater on Film Formation of B30 Cu-Ni Alloy[J]. 中国腐蚀与防护学报, 2022, 42(5): 724-732.
[10] GAO Haodong, CUI Yu, LIU Li, MENG Fandi, LIU Rui, ZHENG Hongpeng, WANG Fuhui. Influence of Simulated Deep Sea Pressured-flowing Seawater on Failure Behavior of Epoxy Glass Flake Coating[J]. 中国腐蚀与防护学报, 2022, 42(1): 39-50.
[11] XU Guifang, LI Yuan, LEI Yucheng, ZHU Qiang. Effect of Relative Flow Velocity on Corrosion Behavior of High Nitrogen Austenitic Stainless Steel in Liquid Lead-bismuth Eutectic Alloy[J]. 中国腐蚀与防护学报, 2021, 41(6): 899-904.
[12] LIN Zhaohui, MING Nanxi, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Hydrostatic Pressure on Corrosion Behavior of X70 Steel in Simulated Sea Water[J]. 中国腐蚀与防护学报, 2021, 41(3): 307-317.
[13] SUN Haijing, QIN Ming, LI Lin. Performance of Al-Zn-In-Mg-Ti Sacrificial Anode in Simulated Low Dissolved Oxygen Deep Water Environment[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[14] CAO Jingyi, WANG Zhiqiao, LI Liang, MENG Fandi, LIU Li, WANG Fuhui. Failure Mechanism of Organic Coating with Modified Graphene Under Simulated Deep-sea Alternating Hydrostatic Pressure[J]. 中国腐蚀与防护学报, 2020, 40(2): 139-145.
[15] HU Zongwu, LIU Jianguo, XING Rui, YIN Fabo. Erosion-corrosion Behavior of 90o Horizontal Elbow in Single Phase Flow[J]. 中国腐蚀与防护学报, 2020, 40(2): 115-122.
No Suggested Reading articles found!