|
|
Distribution of Relaxation Time of Polydimethylsiloxane Coatings During Self-healing Process |
WANG Tong, WANG Wei( ) |
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China |
|
|
Abstract Traditional electrochemical analysis techniques cannot fully reflect the electrochemical process of organic coating corrosion. Hence, distribution of relaxation time (DRT) technique was adopted to fit the electrochemical impedance spectrum (EIS), meanwhile, the distribution of relaxation time of the long-term anticorrosion process of polydimethylsiloxane coatings without and with artificial scratches was investigated, in other word, the later one experienced self-healing cycles. The results show that the function of the EIS itself as a whole and the contribution proportion of each element of the EIS of the coating during the corrosion process can be clearly analyzed via the DRT technique combined with equivalent circuit model analysis. Meanwhile, the corresponding relaxation time of each element in EIS equivalent circuit was discussed theoretically. This paper provides a new analytical technique for corrosion electrochemical mechanism study.
|
Received: 18 April 2022
32134.14.1005.4537.2022.117
|
|
Fund: Supported by National Natural Science Foundation of China(42076039) |
About author: WANG Wei, E-mail: wangwei8038@ouc.edu.cn
|
[1] |
Ye Y W, Liu Z Y, Liu W, et al. Superhydrophobic oligoaniline-containing electroactive silica coating as pre-process coating for corrosion protection of carbon steel [J]. Chem. Eng. J., 2018, 348: 940
doi: 10.1016/j.cej.2018.02.053
|
[2] |
Hou B R, Li X G, Ma X M, et al. The cost of corrosion in China [J]. npj Mater. Degrad., 2017, 1: 4
doi: 10.1038/s41529-017-0005-2
|
[3] |
Yu C T, Yang Y F, Bao Z B, et al. Research progress in preparation and development of excellent bond coats for a dvanced thermal barrier coatings [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 395
|
|
(余春堂, 阳颖飞, 鲍泽斌 等. 先进高温热障涂层用高性能粘接层制备及研究进展 [J]. 中国腐蚀与防护学报, 2019, 39: 395)
|
[4] |
Zhang X H, Zhou Z K, Xu Q J, et al. Anti-corrosion performance of nickel-rich conductive coatings in simulated seawater [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 189
|
|
(张心华, 周仲康, 徐群杰 等. 富镍导电涂层在模拟海水中的耐蚀性能研究 [J]. 中国腐蚀与防护学报, 2017, 37: 189)
|
[5] |
Wang Q, Wang W, Ji X H, et al. Self-healing coatings containing core-shell nanofibers with ph-responsive performance [J]. ACS Appl. Mater. Interfaces, 2021, 13: 3139
doi: 10.1021/acsami.0c18933
|
[6] |
Zhang Y, Fan W J, Zhang T F, et al. Review of Intelligent Self-healing coatings [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 299
|
|
(张勇, 樊伟杰, 张泰峰 等. 涂层自修复技术研究进展 [J]. 中国腐蚀与防护学报, 2019, 39: 299)
|
[7] |
Liu X X, Yu J S, Gao Y, et al. Effect of APTES modified montmorillonite on protective property of hybrid sol-gel coating on Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 464
|
|
(刘煊煊, 于金山, 高燕 等. APTES改性蒙脱土对镁合金表面杂化溶胶-凝胶涂层防护性能的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 464)
|
[8] |
Gao H D, Cui Y, Liu L, et al. Influence of simulated deep sea pressured-flowing seawater on failure behavior of epoxy glass flake coating [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 39
|
|
(高浩东, 崔宇, 刘莉 等. 深海压力-流速耦合环境对环氧玻璃鳞片涂层失效行为的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 39)
|
[9] |
Cao J Y, Wang Z Q, Li L, et al. Failure mechanism of organic coating with modified graphene under simulated deep-sea alternating hydrostatic pressure [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 139
|
|
(曹京宜, 王智峤, 李亮 等. 深海压力交变加速条件下改性石墨烯有机涂层的失效机制 [J]. 中国腐蚀与防护学报, 2020, 40: 139)
|
[10] |
Cao L, Wang W, Li Q Y, et al. Three-dimensional nanofibers network multifunctional material for photothermal self-healing protective coating [J]. Chem. Eng. J., 2022, 440: 134943
doi: 10.1016/j.cej.2022.134943
|
[11] |
Ji X H, Wang W, Zhao X, et al. Poly (dimethyl siloxane) anti-corrosion coating with wide pH-responsive and self-healing performance based on core-shell nanofiber containers [J]. J. Mater. Sci. Technol., 2022, 101: 128
doi: 10.1016/j.jmst.2021.06.014
|
[12] |
Danzer M A. Generalized distribution of relaxation times analysis for the characterization of impedance spectra [J]. Batteries, 2019, 5: 53
doi: 10.3390/batteries5030053
|
[13] |
Schichlein H, Müller A C, Voigts M, et al. Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells [J]. J. Appl. Electrochem., 2002, 32: 875
doi: 10.1023/A:1020599525160
|
[14] |
Sabet P S, Sauer D U. Separation of predominant processes in electrochemical impedance spectra of lithium-ion batteries with nickel-manganese-cobalt cathodes [J]. J. Power Sources, 2019, 425: 121
doi: 10.1016/j.jpowsour.2019.03.068
|
[15] |
Sheng C C, Yu F J, Li C M, et al. Diagnosing the SEI layer in a potassium ion battery using distribution of relaxation time [J]. J. Phys. Chem. Lett., 2021, 12: 2064
doi: 10.1021/acs.jpclett.1c00118
pmid: 33617250
|
[16] |
Ciucci F, Chen C. Analysis of electrochemical impedance spectroscopy data using the distribution of relaxation times: A Bayesian and hierarchical bayesian approach [J]. Electrochim. Acta, 2015, 167: 439
doi: 10.1016/j.electacta.2015.03.123
|
[17] |
Wang J, Huang Q A, Li W H, et al. Fundamentals of distribution of relaxation times for electrochemical impedance spectroscopy [J]. J. Electrochem., 2020, 26: 607
doi: 10.13208/j.electrochem.200641
|
|
(王佳, 黄秋安, 李伟恒 等. 电化学阻抗谱弛豫时间分布基础 [J]. 电化学, 2020, 26: 607)
doi: 10.13208/j.electrochem.200641
|
[18] |
Clematis D, Ferrari T, Bertei A, et al. On the stabilization and extension of the distribution of relaxation times analysis [J]. Electrochim. Acta, 2021, 391: 138916
doi: 10.1016/j.electacta.2021.138916
|
[19] |
Huang J, Papac M, O'Hayre R. Towards robust autonomous impedance spectroscopy analysis: A calibrated hierarchical Bayesian approach for electrochemical impedance spectroscopy (EIS) inversion [J]. Electrochim. Acta, 2021, 367: 137493
doi: 10.1016/j.electacta.2020.137493
|
[20] |
Yang M S, Sun Y H, Chen G M, et al. Preparation of a self-healing silicone coating for inhibiting adhesion of benthic diatoms [J]. Mater. Lett., 2020, 268: 127496
doi: 10.1016/j.matlet.2020.127496
|
[21] |
Cao C N. Principles of Electrochemistry of Corrosion [M]. 3rd ed. Beijng: Chemical Industry Press, 2008: 188
|
|
(曹楚南. 腐蚀电化学原理 [M]. 3版. 北京: 化学工业出版社, 2008: 188)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|