Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (2): 371-376    DOI: 10.11902/1005.4537.2022.126
Current Issue | Archive | Adv Search |
Corrosion Behavior of P110S Oil Casing Steel in Sulfur Containing Environment
WAN Hongxia(), LIU Chonglin, WANG Zian, LIU Ru, CHEN Changfeng
School of New Energy and Materials, China University of Petroleum, Beijing 102249, China
Download:  HTML  PDF(3774KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Casing is an important equipment in oil and gas production industry, at present, the oil casing steels used in the field are mainly K55, N80, L80-13Cr and P110 steel grade etc. With the development of oil and gas fields into deep formations, the casing services in H2S containing environment. Based on this condition, different concentrations of Na2S were used to simulate sulfur-containing environment, and the corrosion behavior of P110S steel was studied in sulfur-containing solutions by means of immersion test, electrochemical workstation scanning electron microscope, laser confocal microscope, XRD and Raman spectroscope. The results show that the P110S steel suffered from severe corrosion in sulfur-containing solutions. The corrosion rate and corrosion current density increased with sulfur concentration. The corrosion morphology changed from uniform corrosion to pitting corrosion, and the corrosion products were loose.

Key words:  oil casing      sulfur-containing environment      corrosion behavior     
Received:  25 April 2022      32134.14.1005.4537.2022.126
ZTFLH:  TG147  
Fund: National Natural Science Foundation of China(52101112)
About author:  WAN Hongxia, E-mail: wanhongxia88@163.com

Cite this article: 

WAN Hongxia, LIU Chonglin, WANG Zian, LIU Ru, CHEN Changfeng. Corrosion Behavior of P110S Oil Casing Steel in Sulfur Containing Environment. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 371-376.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.126     OR     https://www.jcscp.org/EN/Y2023/V43/I2/371

Fig.1  SEM surface images of P110S steel after 7 d immersion in different solutions: (a) 4%NaCl+0.01 mol/L Na2S, (b) 4%NaCl+0.05 mol/L Na2S, (c) 4%NaCl+0.1 mol/L Na2S
Fig.2  CLSM surface (a-c) and SEM cross-sectional (d-f) images of P110S steel after 7 d immersion in different solutions: (a, d) 4%NaCl+0.01 mol/L Na2S, (b, e) 4%NaCl+0.05 mol/L Na2S, (c, f) 4%NaCl+0.1 mol/L Na2S
Fig.3  SEM images of P110S steel after 7 d immersion in 4%NaCl+0.01 mol/L Na2S (a), 4%NaCl+0.05 mol/L Na2S (b) and 4%NaCl+0.1 mol/L Na2S (c) solutions and then removing corrosion products
Fig.4  XRD patterns of corrosion products on the steel substrate (a) and in the solution (b)
Fig.5  Raman spectroscopies of the corrosion products
Fig.6  Nyquist plots (a), Bode plots (b, c) and polarization curves (d) of P110S steel in the solutions containing different concentrations of Na2S
Solution / mol·L-1Rs / Ω·cm2Qf / F·cm2Rf / Ω·cm2Qct / F·cm2Rct / Ω·cm2Icorr / μA·cm-2Ecorr / V
0.011.2333.61×10-64.3434.45×10-3553.333.58-0.7365
0.051.6121.66×10-63.0043.09×10-3352.254.81-0.7353
0.11.2971.39×10-63.0073.56×10-3328.961.78-0.7419
Table 1  Fitting results of EIS in Fig.6 and fitting results of polarization curves
[1] Zhang Z, Zheng Y S, Hou D, et al. The influence of hydrogen sulfide on internal pressure strength of carbon steel production casing in the gas well [J]. J. Pet. Sci. Eng., 2020, 191: 107113
doi: 10.1016/j.petrol.2020.107113
[2] Guo Q, Chen C F, Li S H, et al. Cracking behavior of cold-welding layer on A350 LF2 steel in H2S environment [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 167
(郭强, 陈长风, 李世瀚 等. 冷焊修复层在H2S环境下的开裂行为研究 [J]. 中国腐蚀与防护学报, 2018, 38: 167)
[3] Ayagou M D D, Tran T T M, Tribollet B, et al. Electrochemical impedance spectroscopy of iron corrosion in H2S solutions [J]. Electrochim. Acta, 2018, 282: 775
doi: 10.1016/j.electacta.2018.06.052
[4] Du X L, Dai X J, Li Z C, et al. Corrosion analysis and anti-corrosion measures of oil casing of sulfur content gas wells: A case study of Daniudi gas field in the Ordos Basin [J]. Energy Rep., 2021, 7: 1280
[5] Kahyarian A, Nesic S. H2S corrosion of mild steel: A quantitative analysis of the mechanism of the cathodic reaction [J]. Electrochim. Acta, 2019, 297: 676
doi: 10.1016/j.electacta.2018.12.029
[6] Zheng S Q, Li C Y, Qi Y M, et al. Mechanism of (Mg, Al, Ca)-oxide inclusion-induced pitting corrosion in 316L stainless steel exposed to sulphur environments containing chloride ion [J]. Corros. Sci., 2013, 67: 20
doi: 10.1016/j.corsci.2012.09.044
[7] Hesketh J, Dickinson E J F, Martin M L, et al. Influence of H2S on the pitting corrosion of 316L stainless steel in oilfield brine [J]. Corros. Sci., 2021, 182: 109265
doi: 10.1016/j.corsci.2021.109265
[8] He S, Xing X J, Liu S J, et al. Corrosion rules of commonly used oil well pipes in hydrogen sulfide environment [J]. Surf. Technol., 2018, 47(12): 14
(何松, 邢希金, 刘书杰 等. 硫化氢环境下常用油井管材质腐蚀规律研究 [J]. 表面技术, 2018, 47(12): 14)
[9] Li W F, Zhou Y J, Xue Y. Corrosion behavior of 110S Tube steel in environments of high H2S and CO2 content [J]. J. Iron Steel Res. Int., 2012, 19: 59
[10] Yin Z F, Zhao W Z, Bai Z Q, et al. Corrosion behavior of SM 80SS tube steel in stimulant solution containing H2S and CO2 [J]. Electrochim. Acta, 2008, 53: 3690
doi: 10.1016/j.electacta.2007.12.039
[11] Elgaddafi R, Ahmed R, Shah S. Modeling and experimental studies on CO2-H2S corrosion of API carbon steels under high-pressure [J]. J. Pet. Sci. Eng., 2017, 156: 682
doi: 10.1016/j.petrol.2017.06.030
[12] Liu F, Huang J Y, Xia C Y, et al. Corrosion behavior of P110 S steel in corrosion solution with saturated H2S and CO2 at different temperatures [J]. Corros. Prot., 2016, 37: 481
(刘飞, 黄金营, 夏成宇 等. P110钢在不同温度含饱和H2S/CO2腐蚀溶液中的腐蚀行为 [J]. 腐蚀与防护, 2016, 37: 481)
[13] Zeng D Z, Dong B J, Zeng F, et al. Analysis of corrosion failure and materials selection for CO2-H2S gas well [J]. J. Nat. Gas Sci. Eng., 2021, 86: 103734
doi: 10.1016/j.jngse.2020.103734
[14] Bourdoiseau J A, Jeannin M, Sabot R, et al. Characterisation of mackinawite by Raman spectroscopy: Effects of crystallisation, drying and oxidation [J]. Corros. Sci., 2008, 50: 3247
doi: 10.1016/j.corsci.2008.08.041
[15] Wan H X, Cai Y, Song D D, et al. Effect of Cr/Mo carbides on corrosion behaviour of Fe_Mn_C twinning induced plasticity steel [J]. Corros. Sci., 2020, 167: 108518
doi: 10.1016/j.corsci.2020.108518
[16] Yu H B, Liu J N, Yang M, et al. Effect of crystal structure and ion selectivity of corrosion products on corrosion behavior of P110S low alloy steel in H2S/CO2 environment [J]. Surf. Technol., 2020, 49(3): 28
(于浩波, 刘家宁, 杨明 等. 腐蚀产物晶体结构及离子选择性对P110S低合金钢在H2S/CO2环境中腐蚀行为的影响 [J]. 表面技术, 2020, 49(3): 28)
[17] Zhang W, Young D, Brown B, et al. An in-situ Raman study on the oxidation of mackinawite as a corrosion product layer formed on mild steel in marginally sour environments [J]. Corros. Sci., 2021, 188: 109516
doi: 10.1016/j.corsci.2021.109516
[18] Liu M, Wang J Q, Ke W, et al. Corrosion behavior of X52 anti-H2S pipeline steel exposed to high H2S concentration solutions at 90°C [J]. J. Mater. Sci. Technol., 2014, 30: 504
doi: 10.1016/j.jmst.2013.10.018
[19] Bai P P, Zhao H, Zheng S Q, et al. Initiation and developmental stages of steel corrosion in wet H2S environments [J]. Corros. Sci., 2015, 93: 109
doi: 10.1016/j.corsci.2015.01.024
[20] Dong Y Y, Huang F, Cheng P, et al. Evolution of corrosion product scales on an acid proof pipeline steel X65 MS in H2S containing environment [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 386
(董洋洋, 黄峰, 程攀 等. X65 MS耐酸管线钢在H2S环境中腐蚀产物膜的演变 [J]. 中国腐蚀与防护学报, 2015, 35: 386)
[1] QU Weiwei, CHEN Zehao, PEI Yanling, LI Shusuo, WANG Fuhui. Spreading and Corrosion Behavior of CMAS Melt on Different Materials for Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2023, 43(6): 1407-1412.
[2] ZHONG Jiaxin, GUAN Lei, LI Yu, HUANG Jiayong, SHI Lei. Effect of Second Phase on Corrosion Behavior of Friction-stir-welded Joints of 2xxx Series Al-alloy[J]. 中国腐蚀与防护学报, 2023, 43(6): 1247-1254.
[3] LIU Hao, GUO Xiaokai, WANG Wei, WU Liankui, CAO Fahe, SUN Qingqing. Effect of Ultrasonic Shot Peening on Microstructure and Properties of a 7075 Al-alloy Rod[J]. 中国腐蚀与防护学报, 2023, 43(6): 1293-1302.
[4] HE Jing, YU Hang, FU Ziying, YUE Penghui. Effect of Water-soluble Corrosion Inhibitor on Corrosion Behavior of Q235 Pipeline Steel for Construction[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[5] REN Huangwei, LIAO Bokai, CUI Linjing, XIANG Tengfei. Effect of Liquid Film Thickness on Corrosion Behavior of Solid Slippery Surface under Thin Liquid Film[J]. 中国腐蚀与防护学报, 2023, 43(4): 862-870.
[6] WANG Honglun, YANG Hua, CAI Hui, LI Bowen. Corrosion Behavior of Q235 Steel by Outdoor Exposure and under Shelter in Atmosphere of Hainan Coastal[J]. 中国腐蚀与防护学报, 2023, 43(3): 677-682.
[7] HUANG Jiazhen, HUANG Tao, YANG Lijing, JI Dengping, DING He, WEI Yi, SONG Zhenlun. Electrochemical Properties and Offshore Corrosion Behavior of SAF 2304 Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 630-638.
[8] ZHANG Quanfu, SONG Lei, WANG Jian, GUO Zhenyu, REN Naidong, ZHAO Jianqi, WU Weikang, CHENG Weili. Mechanical Properties and Corrosion Behavior of an Extruded Dilute Mg-alloy Mg-0.5Bi-0.5Sn-0.5Ca[J]. 中国腐蚀与防护学报, 2023, 43(2): 428-434.
[9] ZHAO Yi, CAO Jingyi, FANG Zhigang, FENG Yafei, HAN Zhuo, MENG Fandi, WANG Zhaodong, WANG Fuhui. Corrosion Behavior of A517Gr.Q Marine Steel in Simulated Corrosive Condition of Marine Splashing Zone[J]. 中国腐蚀与防护学报, 2022, 42(6): 921-928.
[10] HUANG Lianpeng, ZHANG Xin, XIONG Yiming, TAO Jiahao, WANG Zehua, ZHOU Zehua. Corrosion Behavior of Al-3.0Mg-xRE/Fe Alloys Under Magnetic Field of Different Intensities[J]. 中国腐蚀与防护学报, 2022, 42(5): 833-838.
[11] LIANG Zhiyuan, XU Yiming, WANG Shuo, LI Yufeng, ZHAO Qinxin. Corrosion Behavior of Heat-resistant Alloys in High Temperature CO2 Environment[J]. 中国腐蚀与防护学报, 2022, 42(4): 613-620.
[12] YANG Yong, ZHANG Qingbao, ZHU Wancheng, LUO Yanlong. Effect of Magnetic Field on Corrosion Behavior of X52 Pipeline Steel in NaCl Solution[J]. 中国腐蚀与防护学报, 2022, 42(3): 501-506.
[13] ZHANG Keqian, ZHANG Hua, LI Yang, HONG Ye, HE Cheng. Corrosion of Electrode Materials in Joule Heated Melter[J]. 中国腐蚀与防护学报, 2022, 42(3): 458-463.
[14] ZHANG Jian, HUANG Jin, XU Jiapeng, LUO Guoqiang, SHEN Qiang. Corrosion Behavior of Molybdenum in LiF-LiCl-LiBr-Li Molten Salt at 500 ℃[J]. 中国腐蚀与防护学报, 2022, 42(1): 67-72.
[15] FANG Haojie, QU Hua, YANG Lihui, ZENG Qingya, WANG Lidan, YUAN Ning, HOU Baorong, CAO Lixin, YUAN Xundao. Corrosion Behavior of 9C Series of Powder Metallurgy Al-alloy with High Corrosion Resistance[J]. 中国腐蚀与防护学报, 2021, 41(6): 775-785.
No Suggested Reading articles found!