Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (2): 428-434    DOI: 10.11902/1005.4537.2022.084
Current Issue | Archive | Adv Search |
Mechanical Properties and Corrosion Behavior of an Extruded Dilute Mg-alloy Mg-0.5Bi-0.5Sn-0.5Ca
ZHANG Quanfu1, SONG Lei1, WANG Jian1, GUO Zhenyu2, REN Naidong1, ZHAO Jianqi1, WU Weikang1, CHENG Weili2()
1.Xiaoyi Dongyi Magnesium Industry Co, Ltd., Xiaoyi 032308, China
2.College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
Download:  HTML  PDF(7436KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Due to its rapid corrosion rate, the mechanical support function of Mg-alloy implants will be lost in a short time after implantation. Mg-Bi based alloys have attracted much attention in biomedical field because of their non-toxic, excellent biocompatibility and corrosion-resistance. However, the low strength restricts the wide application of Mg-Bi binary alloy. Therefore, the effect of Sn and Ca addition on the microstructure, mechanical properties and corrosion behavior of extruded Mg-0.5Bi-based alloy was investigated in the present article. The results indicated that the extruded Mg-0.5Bi-0.5Sn-0.5Ca (mass fraction,%) alloy consists mainly of phases α-Mg, Mg2Bi2Ca and Mg2Sn, and the alloy presents a fully recrystallized microstructure and uniform grain size distribution. The alloy possesses ultimate tensile strength (UTS) of 191 MPa with elongation at break (EL) of 31.5%. In addition, its corrosion rate (Pi) is 0.51 mm/a and polarization resistance (Rp) is 707.19 Ω·cm2. The hydrogen evolution rate initially increased and then decreased with increasing immersion time due to the formation of Sn and Ca-containing products. Finally, the hydrogen evolution rate reached 2.43 mL/d, which is related to the broken of corrosion product film.

Key words:  Mg-Bi based alloy      microstructure      mechanical property      strengthening mechanism      corrosion behavior     
Received:  24 March 2022      32134.14.1005.4537.2022.084
ZTFLH:  TG146  
Fund: Shanxi Scholarship Council of China(2019032);Science and Technology Major Project of Shanxi Province(20191102008)
About author:  CHENG Weili, E-mail: chengweili7@126.com

Cite this article: 

ZHANG Quanfu, SONG Lei, WANG Jian, GUO Zhenyu, REN Naidong, ZHAO Jianqi, WU Weikang, CHENG Weili. Mechanical Properties and Corrosion Behavior of an Extruded Dilute Mg-alloy Mg-0.5Bi-0.5Sn-0.5Ca. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 428-434.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.084     OR     https://www.jcscp.org/EN/Y2023/V43/I2/428

Fig.1  Microstructures (a) and grain size distribution (b) of the extruded Mg-0.5Bi-0.5Sn-0.5Ca alloy
Fig.2  X-ray diffraction pattern (a), SEM micrographs (b, c) and pole figures (d, e) of the extruded Mg-0.5Bi-0.5Sn-0.5Ca alloy
Fig.3  Engineering stress-strain curve (a), work hardening rate curve (b) and fracture surfaces of the tensile samples (c, d) of the extruded Mg-0.5Bi-0.5Sn-0.5Ca alloy
Fig.4  Hydrogen volume evolution (a) and corrosion rates (b) for the extruded Mg-0.5Bi-0.5Sn-0.5Ca alloy measured in the SBF
Fig.5  Polarization curve (a), Nyquist diagram (b) and equivalent circuits of the EIS spectra (c) for the extruded Mg-0.5Bi-0.5Sn-0.5Ca alloy measured in the SBF
Fig.6  XPS analysis of the formed products on the studied alloy: (a) high-resolution Mg 1s spectrum; (b) high-resolution Ca 2p spectrum; (c) high-resolution Sn 3d spectrum; (d) high-resolution O 1s spectrum
SampleEcorr / VIcorr / mA·cm-2Pi / mm·a-1
Mg-0.5Bi-0.5Sn[9]-1.572.65×10-20.59
Mg-0.5Bi-0.5Sn-0.5Ca-1.492.26×10-20.51
Table 1  Comparison of the corrosion resistance for Mg-0.5Bi-0.5Sn-(0.5Ca) alloy
[1] Cho D H, Lee B W, Park J Y, et al. Effect of Mn addition on corrosion properties of biodegradable Mg-4Zn-0.5Ca-xMn alloys [J]. J. Alloy. Compd., 2017, 695: 1166
doi: 10.1016/j.jallcom.2016.10.244
[2] Wang Z Q, Xu C X, Yang L J, et al. Microstructure and corrosion resistance of medical degradable Mg-2Y-1Zn-xZr alloy [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 113
(王中琪, 许春香, 杨丽景 等. 医用可降解Mg-2Y-1Zn-xZr合金微观组织和耐蚀性能研究 [J]. 中国腐蚀与防护学报, 2022, 42: 113)
[3] Wan T, Song S P, Wang J Z, et al. Research progress in corrosion behavior of biomedical magnesium alloys [J]. J. Mater. Eng., 2020, 48(1): 19
(万天, 宋述鹏, 王今朝 等. 生物医用镁合金腐蚀行为的研究进展 [J]. 材料工程, 2020, 48(1): 19)
[4] Tok H Y, Hamzah E, Bakhsheshi-Rad H R. The role of bismuth on the microstructure and corrosion behavior of ternary Mg-1.2Ca-xBi alloys for biomedical applications [J]. J. Alloy. Compd., 2015, 640: 335
doi: 10.1016/j.jallcom.2015.03.217
[5] Pan H, Pang K, Cui F Z, et al. Effect of alloyed Sr on the microstructure and corrosion behavior of biodegradable Mg-Zn-Mn alloy in Hanks' solution [J]. Corros. Sci., 2019, 157: 420
doi: 10.1016/j.corsci.2019.06.022
[6] Liu Y H, Cheng W L, Zhang Y, et al. Microstructure, tensile properties, and corrosion resistance of extruded Mg-1Bi-1Zn alloy: the influence of minor Ca addition [J]. J. Alloy. Compd., 2020, 815: 152414
doi: 10.1016/j.jallcom.2019.152414
[7] Remennik S, Bartsch I, Willbold E, et al. New, fast corroding high ductility Mg-Bi-Ca and Mg-Bi-Si alloys, with no clinically observable gas formation in bone implants [J]. Mater. Sci. Eng., 2011, 176B: 1653
[8] Zeng R C, Qi W C, Cui H Z, et al. In vitro corrosion of as-extruded Mg-Ca alloys—The influence of Ca concentration [J]. Corros. Sci., 2015, 96: 23
doi: 10.1016/j.corsci.2015.03.018
[9] Liu Y, Cheng W L, Gu X J, et al. Tailoring the microstructural characteristic and improving the corrosion resistance of extruded dilute Mg-0.5Bi-0.5Sn alloy by microalloying with Mn [J]. J. Magnes. Alloy., 2021, 9: 1656
doi: 10.1016/j.jma.2020.07.010
[10] Bhattacharyya J J, Wang F, Wu P D, et al. Demonstration of alloying, thermal activation, and latent hardening effects on quasi-static and dynamic polycrystal plasticity of Mg alloy, WE43-T5, plate [J]. Int. J. Plast., 2016, 81: 123
doi: 10.1016/j.ijplas.2016.01.005
[11] Nayyeri G, Poole W J, Sinclair C W, et al. Measurement of the critical resolved shear stress for basal slip in magnesium alloys using instrumented indentation [J]. Scr. Mater., 2018, 156: 37
doi: 10.1016/j.scriptamat.2018.07.003
[12] Tahreen N, Zhang D F, Pan F S, et al. Hot deformation and work hardening behavior of an extruded Mg-Zn-Mn-Y alloy [J]. J. Mater. Sci. Technol., 2015, 31: 1161
doi: 10.1016/j.jmst.2015.10.001
[13] Cheng W L, Ma S C, Bai Y, et al. Corrosion behavior of Mg-6Bi-2Sn alloy in the simulated body fluid solution: the influence of microstructural characteristics [J]. J. Alloy. Compd., 2018, 731: 945
doi: 10.1016/j.jallcom.2017.10.073
[14] Mingo B, Mohedano M, Blawert C, et al. Role of Ca on the corrosion resistance of Mg-9Al and Mg-9Al-0.5Mn alloys [J]. J. Alloy. Compd., 2019, 811: 151992
doi: 10.1016/j.jallcom.2019.151992
[15] Qiao J S, Xia Z H, Liu L B, et al. Corrosion resistance of aluminum-magnesium bimetal composite material prepared by isothermal indirect extrusion [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 255
(乔及森, 夏宗辉, 刘立博 等. 铝镁双金属反向等温包覆挤压棒材耐腐蚀性能 [J]. 中国腐蚀与防护学报, 2021, 41: 255)
[16] Jiang W Y, Wang J F, Zhao W K, et al. Effect of Sn addition on the mechanical properties and bio-corrosion behavior of cytocompatible Mg-4Zn based alloys [J]. J. Magnes. Alloy., 2019, 7: 15
doi: 10.1016/j.jma.2019.02.002
[17] Feng C, Li M Z, Hou Y, et al. Effect of Ca on corrosion resistance behavior of as-cast AZ91 magnesium alloys [J]. Rare Met. Mater. Eng., 2015, 44: 41
doi: 10.1016/S1875-5372(15)30009-6
[18] Dai W L, Wang J X, Luo S, et al. Fabrication of super-hydrophobic surface on AM60 Mg-alloy and its corrosion resistance [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 301
(代卫丽, 王景行, 罗帅 等. AM60镁合金超疏水表面制备及防腐蚀性能的研究 [J]. 中国腐蚀与防护学报, 2022, 42: 301)
[19] Wang X G, Gao K W, Yan L C, et al. Effect of Ce on corrosion resistance of films of ZnAlCe-layered double hydroxides on Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 335
(王晓鸽, 高克玮, 颜鲁春 等. Ce对镁合金表面ZnAlCe-LDHs薄膜耐腐蚀性能的影响机理研究 [J]. 中国腐蚀与防护学报, 2021, 41: 335)
[20] Feng Y J, Wei L, Chen X B, et al. Unexpected cathodic role of Mg41Sm5 phase in mitigating localized corrosion of extruded Mg-Sm-Zn-Zr alloy in NaCl solution [J]. Corros. Sci., 2019, 159: 108133
doi: 10.1016/j.corsci.2019.108133
[21] Yao H, Fang B Y, Cao J L, et al. Effect of Gd content on microstructure and corrosion resistance of as-extruded Mg-0.5Zr-1.8Zn-xGd alloys [J]. Chin. J. Nonferrous Met., 2021, 31: 2101
(姚怀, 方博洋, 曹嘉龙 等. Gd含量对挤压态Mg-0.5Zr-1.8Zn-xGd生物镁合金组织及耐腐蚀性能的影响 [J]. 中国有色金属学报, 2021, 31: 2101)
[22] Feng H, Liu S H, Du Y, et al. Effect of the second phases on corrosion behavior of the Mg-Al-Zn alloys [J]. J. Alloy. Compd., 2017, 695: 2330
doi: 10.1016/j.jallcom.2016.11.100
[23] Wang X J, Chen Z N, Ren J, et al. Corrosion behavior of as-cast Mg-5Sn based alloys with In additions in 3.5wt%NaCl solution [J]. Corros. Sci., 2020, 164: 108318
doi: 10.1016/j.corsci.2019.108318
[1] LIAO Minxing, LIU Jun, DONG Baojun, LENG Xuesong, CAI Zelun, WU Junwei, HE Jianchao. Effect of Salt Spray Environment on Performance of 1Cr18Ni9Ti Brazed Joint[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[2] QU Weiwei, CHEN Zehao, PEI Yanling, LI Shusuo, WANG Fuhui. Spreading and Corrosion Behavior of CMAS Melt on Different Materials for Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2023, 43(6): 1407-1412.
[3] ZHONG Jiaxin, GUAN Lei, LI Yu, HUANG Jiayong, SHI Lei. Effect of Second Phase on Corrosion Behavior of Friction-stir-welded Joints of 2xxx Series Al-alloy[J]. 中国腐蚀与防护学报, 2023, 43(6): 1247-1254.
[4] LIU Hao, GUO Xiaokai, WANG Wei, WU Liankui, CAO Fahe, SUN Qingqing. Effect of Ultrasonic Shot Peening on Microstructure and Properties of a 7075 Al-alloy Rod[J]. 中国腐蚀与防护学报, 2023, 43(6): 1293-1302.
[5] HE Jing, YU Hang, FU Ziying, YUE Penghui. Effect of Water-soluble Corrosion Inhibitor on Corrosion Behavior of Q235 Pipeline Steel for Construction[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[6] LUO Weihua, WANG Haitao, YU Lin, XU Shi, LIU Zhaoxin, GUO Yu, WANG Tingyong. Effect of Zn Content on Electrochemical Properties of Al-Zn-In-Mg Sacrificial Anode Alloy[J]. 中国腐蚀与防护学报, 2023, 43(5): 1071-1078.
[7] LI Tianyu, WANG Weikang, LI Yangtao, BAO Tengfei, ZHAO Mengfan, SHEN Xinxin, NI Lei, MA Qinglei, TIAN Huiwen. Corrosion Failure Mechanism of Ultra-high-performance Concretes Prepared with Sea Water and Sea Sand in an Artificial Sea Water Containing Sulfate[J]. 中国腐蚀与防护学报, 2023, 43(5): 1101-1110.
[8] REN Huangwei, LIAO Bokai, CUI Linjing, XIANG Tengfei. Effect of Liquid Film Thickness on Corrosion Behavior of Solid Slippery Surface under Thin Liquid Film[J]. 中国腐蚀与防护学报, 2023, 43(4): 862-870.
[9] XIAO Meng, WANG Qinying, ZHANG Xingshou, XI Yuchen, BAI Shulin, DONG Lijin, ZHANG Jin, YANG Junjie. Effect of Laser Quenching on Microstructure, Corrosion and Wear Behavior of AISI 4130 Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 713-724.
[10] XIA Xiaojian, WAN Xinyuan, CHEN Yunxiang, HAN Jiceng, CHEN Yiyang, YAN Kanghua, LIN Deyuan, CHEN Tianpeng, ZUO Xiaomei, SUN Baozhuang, CHENG Xuequn. Effect of Heat Treatments on Corrosion Behavior of 3Cr Low Carbon Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 656-662.
[11] WANG Honglun, YANG Hua, CAI Hui, LI Bowen. Corrosion Behavior of Q235 Steel by Outdoor Exposure and under Shelter in Atmosphere of Hainan Coastal[J]. 中国腐蚀与防护学报, 2023, 43(3): 677-682.
[12] HUANG Jiazhen, HUANG Tao, YANG Lijing, JI Dengping, DING He, WEI Yi, SONG Zhenlun. Electrochemical Properties and Offshore Corrosion Behavior of SAF 2304 Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 630-638.
[13] SHANG Jin, GU Yan, ZHAO Jing, WANG Zhe, ZHANG Bo, ZHAO Tongjun, CHEN Zehao, WANG Jinlong. Corrosion Behavior in Molten Salts at 850 ℃ and Its Effect on Mechanical Properties of Hastelloy X Alloy Fabricated by Additive Manufacturing[J]. 中国腐蚀与防护学报, 2023, 43(3): 671-676.
[14] ZHANG Ergeng, YANG Lei, YANG Hu, LIANG Dandan, CHEN Qiang, ZHOU Qiong, HUANG Biao. Review on Research and Optimization of Corrosion Resistance of Thermal Sprayed Fe-based Amorphous Coatings[J]. 中国腐蚀与防护学报, 2023, 43(2): 399-407.
[15] WAN Hongxia, LIU Chonglin, WANG Zian, LIU Ru, CHEN Changfeng. Corrosion Behavior of P110S Oil Casing Steel in Sulfur Containing Environment[J]. 中国腐蚀与防护学报, 2023, 43(2): 371-376.
No Suggested Reading articles found!