Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (2): 435-440    DOI: 10.11902/1005.4537.2022.098
Current Issue | Archive | Adv Search |
Corrosion Behavior of Copper in a Simulated Grounding Condition in Electric Power Grid
GAO Yibin1, DU Xiaogang1, WANG Qiwei2(), ZHONG Liming1, FU Wenhua1, ZHANG Hanping1, ZHANG Meng1, JIANG Chunhai2
1.State Grid Shanxi Electric Power Research Institute, Taiyuan 030001, China
2.School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
Download:  HTML  PDF(4654KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of copper was studied by means of an indoor simulation accelerated test method, aiming to simulate the situation that copper earthed in acidic soil in power grid with alternating current (AC) interference, as well as electrochemical measurement, X-ray diffractometer (XRD) and scanning electron microscope (SEM). The results demonstrate that the interference current AC has a great influence on the corrosion of copper. The corrosion rate of copper is positively related to AC density. The main corrosion products are CuO and Cu2O, while the proportion of Cu2O was declined with the increasing AC density.

Key words:  grounding condition      copper      soil corrosion      alternating current      electric power grid     
Received:  08 April 2022      32134.14.1005.4537.2022.098
ZTFLH:  TG172  
About author:  WANG Qiwei, E-mail: zhangjunxi@21cn.com

Cite this article: 

GAO Yibin, DU Xiaogang, WANG Qiwei, ZHONG Liming, FU Wenhua, ZHANG Hanping, ZHANG Meng, JIANG Chunhai. Corrosion Behavior of Copper in a Simulated Grounding Condition in Electric Power Grid. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 435-440.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.098     OR     https://www.jcscp.org/EN/Y2023/V43/I2/435

Fig.1  Graphic of copper corrosion rate with varied AC densities
Fig.2  XRD patterns of products formed on the copper
Fig.3  Diagram of the value of Cu2O/CuO for copper in the copper electrodes interfered with different AC intensities in acidic soil by XRD patterns
Fig.4  SEM images of corrosion products formed on the copper with interference of different AC intensities; copper with AC intensities of 0 A/m2 (a), 10 A/m2 (b), 30 A/m2 (c), 50 A/m2 (d) and 100 A/m2 (d) respectively
Fig.5  Potentiodynamic polarization curves for copper with interference of AC intensities in simulated acidic soil solution
I / A·m-2Ecorr vs SCE / mVIcorr / A·cm-2
0-62.5614.755×10-6
10-59.3455.773×10-6
30-54.5055.816×10-6
50-49.7131.292×10-5
100-45.2082.800×10-5
Table 1  Fitted result of potentiodynamic polarization curves
[1] Zhou M. Research on the acid-soil anticorrosive grounding device of transformer substations [J]. Electr. Power Surv. Des., 2018, (suppl.2): 118
(周明. 变电站全寿命耐腐蚀接地装置的研究 [J]. 电力勘测设计, 2018, (增刊2): 118)
[2] Fu L J, Liu W W, Guan Y L, et al. Study on the corrosion of grounding grid in substation [J]. Heilongjiang Electr. Power, 2016, 38: 516
(付丽君, 刘伟伟, 关艳玲 等. 土壤对变电站接地网腐蚀的研究 [J]. 黑龙江电力, 2016, 38: 516)
[3] Yu Y F, Zhan Y Z, Lin Z W, et al. Research on 220 kV substation ground grid corrosion status in Hubei power grid [J]. Hubei Electr. Power, 2007, 31(4): 5
(喻亚非, 詹约章, 林志伟 等. 湖北电网220kV变电站接地网腐蚀状况研究 [J]. 湖北电力, 2007, 31(4): 5)
[4] Nie X H, Li X G, Li Y L, et al. Simulative and accelerative experimentation of carbon steel corrosion in soil [J]. J. Mater. Eng., 2012, 40(1): 59
(聂向晖, 李晓刚, 李云龙 等. 碳钢的土壤腐蚀模拟加速实验 [J]. 材料工程, 2012, 40(1): 59)
[5] Fu J, Zhu Z P, Pei F, et al. Influence of chloride ion in sandy soil on corrosion behavior of ground grid 20 steel [J]. Mater. Prot., 2013, 46(9): 57
(付晶, 朱志平, 裴锋 等. 砂质土壤中的Cl-含量对接地网材20钢腐蚀行为的影响 [J]. 材料保护, 2013, 46(9): 57)
[6] Ma G, Han Y, Nie J K, et al. Investigation on corrosion property of grounding copper-clad steel in electrical engineering [J]. East China Electr. Power, 2010, 38: 1736
(马光, 韩钰, 聂京凯 等. 电气工程接地用铜覆钢腐蚀性能研究 [J]. 华东电力, 2010, 38: 1736)
[7] Afonso F S, Neto M M M, Mendonça M H, et al. Copper corrosion in soil: influence of chloride contents, aeration and humidity [J]. J. Solid State Electrochem., 2009, 13: 1757
doi: 10.1007/s10008-009-0868-4
[8] Shao Y P, Mu M M, Zhang B, et al. Corrosion behavior of copper-clad steel bars with unclad two-end faces for grounding grids in the red clay soil [J]. J. Mater. Eng. Perform., 2017, 26: 1751
doi: 10.1007/s11665-017-2581-2
[9] Chen X, Du C W, Li X G, et al. Influences of soil water content on corrosion behavior of X70 steel in Yingtan acidic soil [J]. J. Petrochem. Univ., 2007, 20(4): 55
(陈旭, 杜翠薇, 李晓刚 等. 含水率对X70钢在鹰潭酸性土壤中腐蚀行为的影响 [J]. 石油化工高等学校学报, 2007, 20(4): 55)
[10] Liu S, Sun H Y, Sun L J. Effects of pH values and temperature on the electrochemical corrosion behavior of galvanized steel in simulated rust layer solution [J]. J. Funct. Mater., 2013, 44: 858
(刘栓, 孙虎元, 孙立娟. pH值和温度对镀锌钢在模拟锈层溶液中电化学腐蚀行为的影响 [J]. 功能材料, 2013, 44: 858)
[11] Song Q W, Liu Y, Chen X L, et al. Effect of pH value on the soil corrosion behaviors of X80 pipeline steel [J]. Total Corros. Control, 2008, 22(4): 63
(宋庆伟, 刘云, 陈秀玲 等. pH值对X80管线钢土壤腐蚀行为的影响 [J]. 全面腐蚀控制, 2008, 22(4): 63)
[12] Lu X. Corrosion behavior and mechanism of copper at Nansha Islands marine atmospheric environment [D]. Hefei: University of Science and Technology of China, 2021
(路肖. 在南沙海洋大气环境中的腐蚀行为与机理研究 [D]. 合肥: 中国科学技术大学, 2021)
[13] Huang H L, Pan Z Q, Guo X P, et al. Effect of an alternating electric field on the atmospheric corrosion behaviour of copper under a thin electrolyte layer [J]. Corros. Sci., 2013, 75: 100
doi: 10.1016/j.corsci.2013.05.019
[14] Tran T T M, Fiaud C, Sutter E M M, et al. The atmospheric corrosion of copper by hydrogen sulphide in underground conditions [J]. Corros. Sci., 2003, 45: 2787
doi: 10.1016/S0010-938X(03)00112-4
[15] Yan F J, Li X G, Jiang B, et al. Corrosion behavior of pure copper in alkaline soil [J]. Corros. Sci. Prot. Technol., 2019, 31: 155
(闫风洁, 李辛庚, 姜波 等. 纯铜在碱性土壤中的腐蚀行为 [J]. 腐蚀科学与防护技术, 2019, 31: 155)
[16] Zhang Y T, Fang B L, Ding D, et al. Effects of soil water content and DC current density on initial corrosion behavior of Cu in Baoji soil [J]. Surf. Technol., 2018, 47(6): 131
(张燕涛, 房本岭, 丁德 等. 含水量与直流干扰电流密度对紫铜在宝鸡土壤中初期腐蚀行为的影响 [J]. 表面技术, 2018, 47(6): 131)
[17] Wu Y H, Luo S X, Gou H. The corrosion behavior of copper in acid soil during soil acidification by simulated acid rain [J]. Materialwiss. Werkstofftech., 2012, 43: 1074
doi: 10.1002/mawe.201200927
[18] General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, StandardizationAdministration. Corrosion of metals and alloys—Removal of corrosion products from corrosion test specimens [S]. Beijing: Standards Press of China, 2016
(中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 金属和合金的腐蚀 腐蚀试样上腐蚀产物的清除 [S]. 北京: 中国标准出版社, 2016)
[19] Zhu M, Du C W, Li X G, et al. Corrosion behavior of pure copper and copper-clad steels in soil at dagang district [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 496
(朱敏, 杜翠薇, 李晓刚 等. 纯Cu和铜包钢在大港土壤环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2013, 33: 496)
[20] Shoaib S, Srinophakun T R, Palsson N S. Influence of soil conditions on corrosion behavior of buried coated and uncoated carbon steels [A]. IEEE International Conference on Innovative Research and Development [C]. Bangkok, 2018: 1
[21] Yu X Y, Wang Z H, Lu Z H. Atmospheric corrosion behavior of copper under static magnetic field environment [J]. Mater. Lett., 2020, 266: 127472
doi: 10.1016/j.matlet.2020.127472
[22] Alfantazi A M, Ahmed T M, Tromans D. Corrosion behavior of copper alloys in chloride media [J]. Mater. Des., 2009, 30: 2425
doi: 10.1016/j.matdes.2008.10.015
[23] Chen S Q, Zhang D. Study of corrosion behavior of copper in 3.5wt.%NaCl solution containing extracellular polymeric substan-ces of an aerotolerant sulphate-reducing bacteria [J]. Corros. Sci., 2018, 136: 275
doi: 10.1016/j.corsci.2018.03.017
[24] FitzGerald K P, Nairn J, Skennerton G, et al. Atmospheric corrosion of copper and the colour, structure and composition of natural patinas on copper [J]. Corros. Sci., 2006, 48: 2480
doi: 10.1016/j.corsci.2005.09.011
[25] Zhao W J, Babu R P, Chang T R, et al. Initial atmospheric corrosion studies of copper from macroscale to nanoscale in a simulated indoor atmospheric environment [J]. Corros. Sci., 2022, 195: 109995
doi: 10.1016/j.corsci.2021.109995
[26] Zha F L, Feng B, He T X. Corrosion behavior of copper grounding materials buried in soil at different depths [J]. Mater. Prot., 2015, 48(3): 48
(查方林, 冯兵, 何铁祥. 不同埋地深度下铜质接地网材料的腐蚀特性 [J]. 材料保护, 2015, 48(3): 48)
[27] Chen K F. Chemical reaction controlled synthesis of copper compounds and their materials performances [D]. Dalian: Dalian University of Technology, 2014
(陈昆峰. 铜化合物的化学反应控制合成与材料性能研究 [D]. 大连: 大连理工大学, 2014)
[28] Chen K F, Si Y F, Xue D F. Directing the branching growth of cuprous oxide by OH- ions [J]. Mod. Phys. Lett., 2009, 23B: 3753
[29] Yin M, Wu C K, Lou Y B, et al. Copper oxide nanocrystals [J]. J. Am. Chem. Soc., 2005, 127: 9506
pmid: 15984877
[30] Tan Y T, Liu X X, Ma L R, et al. The effect of hematite on the corrosion behavior of copper in saturated red soil solutions [J]. J. Mater. Eng. Perform., 2020, 29: 2324
doi: 10.1007/s11665-020-04741-w
[31] Goidanich S, Lazzari L, Ormellese M, et al. Influence of AC on corrosion kinetics for carbon steel, zinc and copper [R]. Houston: NACE International, 2005
[32] Wang Q W, Zhang J X, Gao Y, et al. Galvanic effect and alternating current corrosion of steel in acidic red soil [J]. Metals, 2022, 12: 296
doi: 10.3390/met12020296
[1] XING Shaohua, LIU Zhongye, LIU Jinzeng, BAI Shuyu, QIAN Yao, ZHANG Dalei. Galvanic Corrosion Behavior of ZCuSn5Pb5Zn5/B10 Couple in Flowing Seawater[J]. 中国腐蚀与防护学报, 2023, 43(6): 1339-1348.
[2] WANG Xiao, LI Ming, LIU Feng, WANG Zhongping, LI Xiangbo, LI Ningwang. Effect of Temperature on Erosion-corrosion Behavior of B10 Cu-Ni Alloy Pipe[J]. 中国腐蚀与防护学报, 2023, 43(6): 1329-1338.
[3] YANG Haifeng, YUAN Zhizhong, LI Jian, ZHOU Naipeng, GAO Feng. Effect of Ni Content on Corrosion Behavior of Cu-bearing Aged Weldable Steels in a Simulated Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2023, 43(5): 1022-1030.
[4] ZHOU Hao, YOU Shijie, WANG Shengli. Corrosion Behavior and Corrosion Inhibitor for Copper Artifacts in CO2 Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1049-1056.
[5] WANG Yang, LIU Yuanhai, MU Xianlian, LIU Miaoran, WANG Jun, LI Qiuping, CHEN Chuan. Effect of Environmental Factors on Material Transfer in Thin Liquid Film During Atmospheric Corrosion Process in Marine Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1015-1021.
[6] SHANG Xiaobiao, XIAO Renyou, LI Jiajian, ZHANG Zhihao. Improvement of Anode Corrosion Uniformity of Copper Electrolysis Cell Based on Multi-physical Field Coupling Theory[J]. 中国腐蚀与防护学报, 2023, 43(3): 663-670.
[7] CHEN Hanlin, MA Li, HUANG Guosheng, DU Min. Effects of pH Value, Temperature and Salinity on Film Formation of B30 Cu-Ni Alloy in Seawater[J]. 中国腐蚀与防护学报, 2023, 43(3): 481-493.
[8] ZHU Hao, CHENG Yi, SONG Xuan, ZHAO Wenxia, LI Xinwei, LIU Xin, HUI Kaihong, CHEN Huaijun, ZHAI Shilong. Effect of L-malic Acid and 2,2'-bidipyridine on Electroless Copper Plating in Potassium Sodium Tartrate System at Low Temperature[J]. 中国腐蚀与防护学报, 2023, 43(3): 544-552.
[9] XING Shaohua, LIU Jinzeng, BAI Shuyu, QIAN Yao, ZHANG Dalei, MA Li. Influence of Seawater Flow Speed on Galvanic Corrosion Behavior of B10/B30 Alloys Coupling[J]. 中国腐蚀与防护学报, 2023, 43(2): 391-398.
[10] WANG Xiao, LIU Feng, LI Yan, ZHANG Wei, LI Xiangbo. Corrosion Behavior of B10 Cu-Ni Alloy Pipe in Static and Dynamic Seawater[J]. 中国腐蚀与防护学报, 2023, 43(1): 119-126.
[11] XIA Xiaojian, WAN Xinyuan, GAO Yan, WANG Qiwei, YAN Kanghua, CHEN Yunxiang, HONG Yicheng, ZHANG Junxi. Corrosion Characteristics of Atmospheric Corrosion of 1050 Al-alloy under Power-on Condition[J]. 中国腐蚀与防护学报, 2022, 42(6): 1065-1069.
[12] MA Xiaoze, MENG Lingdong, CAO Xiangkang, XIAO Song, DONG Zehua. Influence of Co-deposition of Pollutant Particulates Ammonium Sulfate and Sodium Chloride on Atmospheric Corrosion of Copper of Printed Circuit Board[J]. 中国腐蚀与防护学报, 2022, 42(4): 540-550.
[13] DING Cong, ZHANG Jinling, YU Yanchong, LI Yelei, WANG Shebin. Corrosion Kinetics of A572Gr.65 Steel in Different Simulated Soil Solutions[J]. 中国腐蚀与防护学报, 2022, 42(1): 149-155.
[14] TONG Yao, SONG Qining, LI Huilin, XU Nan, BAO Yefeng, ZHANG Genyuan, ZHAO Lijuan. A Comparative Assessment on Cavitation Erosion Behavior of Typical Copper Alloys Used for Ship Propeller[J]. 中国腐蚀与防护学报, 2021, 41(5): 639-645.
[15] LIU Hongyu, ZHANG Xiqing, TENG Yingxue, LI Shengli. Corrosion Resistance and Antifouling Performance of Copper-bearing Low-carbon Steel in Marine Environment[J]. 中国腐蚀与防护学报, 2021, 41(5): 679-685.
No Suggested Reading articles found!