Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (2): 421-427    DOI: 10.11902/1005.4537.2022.115
Current Issue | Archive | Adv Search |
Corrosion Behavior of Three Super Austenitic Stainless Steels in a Molten Salts Mixture at 650-750 ℃
HAN Ruizhu1, JIA Jianwen1, LI Yang2, ZHANG Wei2, XU Fanghong2, HOU Lifeng1(), WEI Yinghui1
1.Shanxi Province Metal Material Corrosion and Protection Engineering Technology Research Center, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2.State Key Laboratory of Advanced Stainless Steel, Taiyuan Iron and Steel (Group) Co. Ltd., Taiyuan 030003, China
Download:  HTML  PDF(11443KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The high temperature corrosion properties of three super austenitic stainless steels 254SMo, 904L and 317L, were studied in a molten salts mixture of 30%Na2SO4+30%K2SO4+20%NaCl+20%KCl at 650, 700 and 750 ℃ for 50 h, respectively. By virtue of examination of the corrosion kinetics, composition and morphology of corrosion products, the high-temperature corrosion mechanism of three kinds of austenitic stainless steels in the molten salts' mixture was explored. The results show that all the three steels exhibit mass loss at different temperatures, and the order of corrosion resistance of the three steels can be ranked as follows: 254SMo>904L>317L. Molten chloride salts would accelerate the corrosion of steels and the corrosion mechanism of which may be ascribed to electrochemical corrosion and chlorine active corrosion. Sulfates dissolve and destroy the corrosion products by means of alkaline co-dissolution and thus result in serious internal and intergranular corrosion. Although all three steels are subjected simultaneously to both sulfate salt and chloride salt induced corrosion, the chloride salts are predominant in terms of the severity of corrosion. However, the addition of Mo and Ni can improve the high temperature corrosion resistance of austenitic stainless steel to a certain extent.

Key words:  austenitic stainless steel      high corrosion      corrosion kinetics     
Received:  16 April 2022      32134.14.1005.4537.2022.115
ZTFLH:  TG174  
About author:  HOU Lifeng, E-mail: houlifeng78@126.com

Cite this article: 

HAN Ruizhu, JIA Jianwen, LI Yang, ZHANG Wei, XU Fanghong, HOU Lifeng, WEI Yinghui. Corrosion Behavior of Three Super Austenitic Stainless Steels in a Molten Salts Mixture at 650-750 ℃. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 421-427.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.115     OR     https://www.jcscp.org/EN/Y2023/V43/I2/421

SteelCSiMnPSCrNiMoCuNBFe
317L0.0190.571.250.0240.00118.2917.323.150.050.050.004Bal.
904L0.0110.451.280.0190.00120.0824.224.321.410.06---Bal.
254SMo0.0100.430.400.0210.00119.9817.856.060.610.210.004Bal.
Table 1  Compositions of three austenitic stainless steels used in the experiment[12](mass fraction / %)
Fig.1  Hot corrosion kinetics of 317L (a), 904L (b) and 254SMo (c) stainless steels in mixed salt at different temperatures
Fig.2  XRD patterns of 317L (a), 904L (b) and 254SMo (c) stainless steels before and after hot corrosion for 50 h at different temperatures
Fig.3  SEM surface images of 317L (a-c), 904L (d-f) and 254SMo (g-i) stainless steels after hot corrosion in mixed salt at 650 ℃ (a, d, g), 700 ℃ (b, e, h) and 750 ℃ (c, f, i)
Fig.4  SEM images and EDS results of 317L (a), 904L (b) and 254SMo (c) stainless steel after hot corrosion at 750 ℃
Fig.5  Cross-sectional morphologies of 317L (a-c), 904L (d-f) and 254SMo (g-i) stainless steel after hot corrosion for 50 h at 650 ℃ (a, d, g), 700 ℃ (b, e, h) and 750 ℃ (c, f, i)
[1] Kawahara Y. High temperature corrosion mechanisms and effect of alloying elements for materials used in waste incineration environment [J]. Corros. Sci., 2002, 44: 223
doi: 10.1016/S0010-938X(01)00058-0
[2] Tillman D A. Biomass cofiring: the technology, the experience, the combustion consequences [J]. Biomass Bioenergy, 2000, 19: 365
doi: 10.1016/S0961-9534(00)00049-0
[3] Qu Z P, Zhong R G, Wang L, et al. Research progress on high temperature corrosion mechanism of waste incineration power generation boiler [J]. IOP Conf. Ser. Earth Environ. Sci., 2020, 598: 012008
[4] Zhang S C, Jiang Z H, Li H B, et al. Precipitation behavior and phase transformation mechanism of super austenitic stainless steel S32654 during isothermal aging [J]. Mater. Charact., 2018, 137: 244
doi: 10.1016/j.matchar.2018.01.040
[5] Nielsen H P, Frandsen F J, Dam-Johansen K, et al. The implications of chlorine-associated corrosion on the operation of biomass-fired boilers [J]. Prog. Energy Combust. Sci., 2000, 26: 283
doi: 10.1016/S0360-1285(00)00003-4
[6] Zhang S C, Jiang Z H, Li H B, et al. Detection of susceptibility to intergranular corrosion of aged super austenitic stainless steel S32654 by a modified electrochemical potentiokinetic reactivation method [J]. J. Alloy. Compd., 2017, 695: 3083
doi: 10.1016/j.jallcom.2016.11.342
[7] Olsson J, Wasielewska W. Applications and experience with a Superaustenitic 7Mo stainless steel in hostile environments [J]. Mater. Corros., 1997, 48: 791
[8] Pettersson J, Folkeson N, Johansson L G, et al. The effects of KCl, K2SO4 and K2CO3 on the high temperature corrosion of a 304-type austenitic stainless steel [J]. Oxid. Met., 2011, 76: 93
doi: 10.1007/s11085-011-9240-z
[9] Li M H, Sun X F, Hu W Y, et al. Hot corrosion of a single crystal Ni-base superalloy by Na-salts at 900 ℃ [J]. Oxid. Met., 2006, 65: 137
doi: 10.1007/s11085-006-9004-3
[10] Lindberg D, Backman R, Chartrand P. Thermodynamic evaluation and optimization of the (NaCl+Na2SO4+Na2CO3+KCl+K2SO4+ K2CO3) system [J]. J. Chem. Thermodyn., 2007, 39: 1001
doi: 10.1016/j.jct.2006.12.018
[11] Samanta P, Hirani H. Magnetic bearing configurations: theoretical and experimental studies [J]. IEEE Trans. Magn., 2008, 44: 292
doi: 10.1109/TMAG.2007.912854
[12] Yi P, Hou L F, Du H Y, et al. NaCl Induced Corrosion of Three Austenitic Stainless Steels at High Temperature [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 288
(伊璞, 侯利锋, 杜华云 等. 新型奥氏体不锈钢高温NaCl腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 288)
[13] Ding W J, Bonk A, Bauer T. Corrosion behavior of metallic alloys in molten chloride salts for thermal energy storage in concentrated solar power plants: a review [J]. Front. Chem. Sci. Eng., 2018, 12: 564
doi: 10.1007/s11705-018-1720-0
[14] Broström M. Aspects of alkali chloride chemistry on deposit formation and high temperature corrosion in biomass and waste fired boilers [R]. Energy Technology and Thermal Process Chemistry, 2010
[15] Judge A I. Preparation and thermochemical properties of alkali-metal diuranates (VI) and dineptunates (VI) [D]. Leicester: University of Leicester, 1985
[16] Lee S H, Themelis N J, Castaldi M J. High-temperature corrosion in waste-to-energy boilers [J]. J. Therm. Spray Technol., 2007, 16: 104
doi: 10.1007/s11666-006-9005-4
[17] Chen L Y, Lan H, Huang C B, et al. Hot corrosion behavior of porous nickel-based alloys containing molybdenum in the presence of NaCl at 750 °C [J]. Eng. Failure Anal., 2017, 79: 245
doi: 10.1016/j.engfailanal.2017.05.009
[18] Weulersse-Mouturat K, Moulin G, Billard P, et al. High temperature corrosion of Superheater tubes in waste incinerators and coal-fired plants [A]. International Symposium on High Temperature Corrosion and Protection of Materials[C]. Les Embiez, 2004
[19] Zahs A, Spiegel M, Grabke H J. Chloridation and oxidation of iron, chromium, nickel and their alloys in chloridizing and oxidizing atmospheres at 400-700 ℃ [J]. Corros. Sci., 2000, 42: 1093
doi: 10.1016/S0010-938X(99)00142-0
[20] Ma J, Jiang S M, Gong J, et al. Behaviour and mechanisms of alkali-sulphate-induced hot corrosion on composite coatings at 900 ℃ [J]. Corros. Sci., 2012, 58: 251
doi: 10.1016/j.corsci.2012.01.034
[21] Doolabi M S, Ghasemi B, Sadrnezhaad S K, et al. Hot corrosion behavior and near-surface microstructure of a "low-temperature high-activity Cr-aluminide" coating on inconel 738LC exposed to Na2SO4, Na2SO4+V2O5 and Na2SO4+V2O5+NaCl at 900 ℃ [J]. Corros. Sci., 2017, 128: 42
doi: 10.1016/j.corsci.2017.09.004
[22] Goebel J A, Pettit F S. The influence of sulfides on the oxidation behavior of nickel-base alloys [J]. Metall. Trans., 1970, 1: 3421
[23] Ishitsuka T, Nose K. Stability of protective oxide films in waste incineration environment—solubility measurement of oxides in molten chlorides [J]. Corros. Sci., 2002, 44: 247
doi: 10.1016/S0010-938X(01)00059-2
[1] LIANG Chaoxiong, LIANG Xiaohong, HAN Peide. Effect of a New Heat Treatment Process on B Elements Distribution, Second Phase Precipitation and Corrosion Resistance of S31254 Super Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 639-646.
[2] WANG Yanfei, LI Yaozhou, HUANG Yuting, XIE Honglin, WU Weijie. Effect of Grain Size on Hydrogen Embrittlement of 304L Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 494-506.
[3] HE Zhihao, JIA Jianwen, LI Yang, ZHANG Wei, XU Fanghong, HOU Lifeng, WEI Yinghui. Passivation Behavior of Super Austenitic Stainless Steels in Simulated Flue Gas Desulfurization Condensate[J]. 中国腐蚀与防护学报, 2023, 43(2): 408-414.
[4] CHEN Tingting, WU Xiaolei, HAN Peide. Gradient Nanotwin Structure Prepared by SMAT Technology on S31254 Super Austenitic Stainless Steel Surface and Its Corrosion Behavior in 10%NaCl Solution[J]. 中国腐蚀与防护学报, 2022, 42(6): 973-978.
[5] LV Yingxi. Analysis of Cl- Corrosion Resistance of High Mo Super Austenitic Stainless Steels[J]. 中国腐蚀与防护学报, 2022, 42(5): 765-770.
[6] YI Pu, HOU Lifeng, DU Huayun, LIU Xiaoda, JIA Jianwen, LI Yang, ZHANG Wei, XU Fanghong, WEI Yinghui. NaCl Induced Corrosion of Three Austenitic Stainless Steels at High Temperature[J]. 中国腐蚀与防护学报, 2022, 42(2): 288-294.
[7] YIN Yangyang, LIU Jianfeng, MIAO Keji, WANG Ting, NING Kai, PAN Weiguo, YUAN Binxia, YIN Shibin. Effect of SO42- on Corrosion of Stainless Steel in Solutions Containing Cl-[J]. 中国腐蚀与防护学报, 2022, 42(1): 34-38.
[8] DING Cong, ZHANG Jinling, YU Yanchong, LI Yelei, WANG Shebin. Corrosion Kinetics of A572Gr.65 Steel in Different Simulated Soil Solutions[J]. 中国腐蚀与防护学报, 2022, 42(1): 149-155.
[9] XU Guifang, LI Yuan, LEI Yucheng, ZHU Qiang. Effect of Relative Flow Velocity on Corrosion Behavior of High Nitrogen Austenitic Stainless Steel in Liquid Lead-bismuth Eutectic Alloy[J]. 中国腐蚀与防护学报, 2021, 41(6): 899-904.
[10] ZHANG Huiyun, ZHENG Liuwei, MENG Xianming, LIANG Wei. Effect of Electrochemical Hydrogen Charging on Hydrogen Embrittlement Sensitivity of Cr15 Ferritic and 304 Austenitic Stainless Steels[J]. 中国腐蚀与防护学报, 2021, 41(2): 202-208.
[11] SUN Xiaoguang,HAN Xiaohui,ZHANG Xingshuang,ZHANG Zhiyi,LI Gangqing,DONG Chaofang. Corrosion Resistance and Environmentally-friendly Chemical Passivation of Welded Joints for Ultra-low Carbon Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[12] Xiwu LIU,Xiaoyan ZHAO,Xin'an CUI,Lanfei XU,Xiaowei LI,Rongqi CHENG. Corrosion Behavior of 304L Stainless Steel in Nitric Acid-Sodium Nitrate Solutions[J]. 中国腐蚀与防护学报, 2018, 38(6): 543-550.
[13] Xiaoyan ZHAO, Xiwu LIU, Xin'an CUI, Fengchang YU. Corrosion Behavior of 304L Steel in Nitric Acid Environment[J]. 中国腐蚀与防护学报, 2018, 38(5): 455-462.
[14] Chao SUN, Xiao YANG, Yuhua WEN. Effect of High-Al Austenitic Stainless Alloy Coatings Prepared by Magnetron Sputtering on High Temperature Oxidation Resistance of 316 Stainless Steel[J]. 中国腐蚀与防护学报, 2017, 37(6): 590-596.
[15] YIN Kaiju, QIU Shaoyu, TANG Rui, HONG Xiaofeng, ZHANG Lefu, ZHANG Qiang. CORROSION BEHAVIOR OF SUPER-AUSTENITIC STAINLESS STEEL AL-6XN IN SUPERCRITICAL WATER[J]. 中国腐蚀与防护学报, 2012, 32(5): 375-380.
No Suggested Reading articles found!