|
|
Review of Regional Atmospheric Corrosion Mapping Technologys |
FAN Zhibin( ), LI Xingeng, WANG Xiaoming, WANG Qian |
State Grid Shandong Electric Power Research Institute, Jinan 250002, China |
|
|
Abstract Atmospheric corrosion map is a graphical method for describing the corrosivity of the atmospheric environment of a designated area on a geographic map, which can provide data support for the anti-corrosion design, maintenance, and life prediction of the outdoor projects. It is of great significance to save anti-corrosion cost and ensure the safety of the project. Atmospheric corrosion maps have evolved from the initial grid and contour maps to more intuitive and easy-to-read colorful maps. The development of the dose response function solves the problem that it is difficult to obtain sufficient corrosion data from the exposure test, and the atmospheric corrosion data of the target area can be calculated quickly by using the environmental data. The inverse distance weighting and kriging interpolation models are mainly used in constructing atmospheric corrosion maps to predict the assignment of data blank areas, but the relevant applicability and error analysis of the models have not been reported yet. Based on the development of atmospheric corrosion mapping technologys, the development directions of atmospheric corrosion mapping technology may be proposed as follows: the establish Dose Response Functions that reflect the corrosion mechanism of materials, with greater applicability and less error, and to study spatial interpolation models that are more suitable for atmospheric corrosion data.
|
Received: 06 March 2022
32134.14.1005.4537.2022.060
|
|
Fund: Science and Technology Project of State Electric Power Company Grid Shandong(5200-202016471A-0-0-00) |
Corresponding Authors:
FAN Zhibin, E-mail: fan200403707@163.com
|
1 |
Hou B R. The Cost of Corrosion in China [M]. Beijing: Science Press, 2017
|
|
侯保荣. 中国腐蚀成本 [M]. 北京: 科学出版社, 2017
|
2 |
Koch G H, Brongers M P H, Thompson N G, et al. Cost of corrosion in the United States [A]. Kutz M. Handbook of Environmental Degradation of Materials [M]. Norwich: William Andrew, 2005: 3
|
3 |
Li X G, Zhang D W, Liu Z Y, et al. Materials science: share corrosion data [J]. Nature, 2015, 527: 441
doi: 10.1038/527441a
|
4 |
Koch G, Varney J, Thompson N, et al. International measures of prevention, application, and economics of corrosion technologies study [R]. Houston: NACE International, 2016
|
5 |
Cao C N. Natural Environment Corrosion of Chinese Materials [M]. Beijing: Chemical Industry Press, 2005
|
|
曹楚南. 中国材料的自然环境腐蚀 [M]. 北京: 化学工业出版社, 2005
|
6 |
Tang Q H, Zhang X Y. Mapping of typical atmospheric corrosion at home and abroad [J]. Equip. Environ. Eng., 2010, 7(4): 81
|
|
唐其环, 张先勇. 国内外典型大气腐蚀图及其绘制 [J]. 装备环境工程, 2010, 7(4): 81
|
7 |
Natesan M, Venkatachari G, Palaniswamy N. Corrosivity and durability maps of India [J]. Corros. Prev. Control, 2005, 52: 43
|
8 |
Shaw T R. Corrosion map of the British isles: la pollution atmospherique-une carte de corrosion DANs LES ILEs Britanniques [A]. EnglundHM, BeeryWT. Proceedings of the Second International Clean Air Congress [M]. New York: Academic Press, 1971: 121
|
9 |
Shaw T R. Corrosion Map of the British Isles [M]. West Conshohocken: ASTM International, 1978
|
10 |
Maldonado L, Veleva L. Corrosivity category maps of a humid tropical atmosphere: the Yucatán Peninsula, México [J]. Mater. Corros., 1999, 50: 261
doi: 10.1002/(ISSN)1521-4176
|
11 |
Kim Y S, Lim H K, Kim J J, et al. Corrosion cost and corrosion map of Korea-based on the data from 2005 to 2010 [J]. Corros. Sci. Technol., 2011, 10: 52
|
12 |
Kim Y S, Lim H K, Kim J J, et al. Corrosivity of atmospheres in the Korean peninsula [J]. Corros. Sci. Technol., 2011, 10: 109
|
13 |
Santana J J, Santana J, González J E, et al. Atmospheric corrosivity map for steel in Canary Isles [J]. Br. Corros. J., 2001, 36: 266
doi: 10.1179/000705901101501721
|
14 |
Vera R, Puentes M, Araya R, et al. Mapa de corrosión atmosférica de Chile: resultados después de un año de exposición [J]. Rev. Constr., 2012, 11: 61
|
15 |
van Rensburg D T J, Cornish L A, van der Merwe J. Corrosion map of South Africa's macro atmosphere [J]. South Afr. J. Sci., 2019, 115: #4901
|
16 |
Dean S W, Reiser D B. Analysis of Long-Term Atmospheric Corrosion Results from ISO CORRAG Program [M]. West Conshohocken: ASTM International, 2002
|
17 |
Knotkova D, Boschek P, Kreislova K. Results of ISO CORRAG Program: Processing of One-Year Data in Respect to Corrosivity Classification [J]. ASTM Spec. Tech. Pub., 1995, 1239: 38
|
18 |
Chico B, De la Fuente D, Díaz I, et al. Annual atmospheric corrosion of carbon steel worldwide. An integration of ISOCORRAG, ICP/UNECE and MICAT databases [J]. Materials, 2017, 10: 601
doi: 10.3390/ma10060601
|
19 |
Kucera V, Tidblad J, Kreislova K, et al. UN/ECE ICP materials dose-response functions for the multi-pollutant situation [J]. Water, Air, Soil Pollut.: Focus, 2007, 7: 249
|
20 |
Castaño J G, Botero C A, Restrepo A H, et al. Atmospheric corrosion of carbon steel in Colombia [J]. Corros. Sci., 2010, 52: 216
doi: 10.1016/j.corsci.2009.09.006
|
21 |
Pintos S, Queipo N V, de Rincón O T, et al. Artificial neural network modeling of atmospheric corrosion in the MICAT project [J]. Corros. Sci., 2000, 42: 35
doi: 10.1016/S0010-938X(99)00054-2
|
22 |
Morcillo M. Atmospheric Corrosion in Ibero-America: The MICAT Project [J]. ASTM Spec. Tech. Pub., 1995, 1239: 257
|
23 |
Vilche J R, Varela F E, Acuña G, et al. A survey of Argentinean atmospheric corrosion: I—Aluminium and zinc samples [J]. Corros. Sci., 1995, 37: 941
doi: 10.1016/0010-938X(95)00006-6
|
24 |
Leuenberger-Minger A U, Buchmann B, Faller M, et al. Dose-response functions for weathering steel, copper and zinc obtained from a four-year exposure programme in Switzerland [J]. Corros. Sci., 2002, 44: 675
doi: 10.1016/S0010-938X(01)00097-X
|
25 |
Tidblad J, Kucera V, Mikhailov A A, et al. UN ECE ICP materials: dose-response functions on dry and wet acid deposition effects after 8 years of exposure [A]. SatakeK, ShindoJ, TakamatsuT, et al. Acid Rain 2000 [M]. Dordrecht: Springer, 2001: 1457
|
26 |
Mikhailov A A, Tidblad J, Kucera V. The classification system of ISO 9223 standard and the dose–response functions assessing the corrosivity of outdoor atmospheres [J]. Prot. Met., 2004, 40: 541
doi: 10.1023/B:PROM.0000049517.14101.68
|
27 |
Haagenrud S E, Henriksen J F, Gram F. Dose-response functions and corrosion mapping for a small geographical area [A]. Proceedings of the Fall 1985 meeting of the Electrochemical Society [C]. Las Vegas, 1985: 215
|
28 |
Kozák J, Ivašková M, Koteš P. Atmosphere aggressivity state mapping in Slovak republic for corrosion of construction materials [J]. Mater. Sci. Forum, 2015, 811: 49
doi: 10.4028/www.scientific.net/MSF.811
|
29 |
Ivaskova M, Kotes P, Brodnan M. Air pollution as an important factor in construction materials deterioration in Slovak Republic [J]. Procedia Eng., 2015, 108: 131
doi: 10.1016/j.proeng.2015.06.128
|
30 |
Kreislova K, Geiplova H, Skorepova I, et al. Method for creation of actual maps of atmospheric corrosivity for the Czech Republic [A]. Proceeding of EUROCORR 2015 [C]. Graz, Austria, 2015
|
31 |
Kreislová K, Geiplová H, Skořepová I, et al. Nové mapy korozní agresivity Èeské republiky/Up-dated maps of atmospheric corrosivity for Czech Republic [J]. KOM-Corros. Mater. Prot. J., 2015, 59: 81
|
32 |
Reiss D, Rihm B, Thöni C, et al. Mapping stock at risk and release of zinc and copper in Switzerland—dose response functions for runoff rates derived from corrosion rate data [J]. Water, Air, Soil Pollut., 2004, 159: 101
|
33 |
Wallinder I O, Bahar B, Leygraf C, et al. Modelling and mapping of copper runoff for Europe [J]. J. Environ. Monit., 2007, 9: 66
doi: 10.1039/B612041E
|
34 |
Mikhailov A A. Estimating and mapping the material corrosion losses in the European part of Russia with unified doze—response functions [J]. Prot. Met., 2002, 38: 243
doi: 10.1023/A:1015617405346
|
35 |
Panchenko Y, Marshakov A, Igonin T, et al. Corrosivity of atmosphere toward structural metals and mapping the continental Russian territory [J]. Corros. Eng., Sci. Technol., 2019, 54: 369
|
36 |
Chico B, de la Fuente D, Vega J M, et al. Corrosivity maps of Spain for zinc in rural atmospheres [J]. Rev. Metal., 2010, 46: 485
doi: 10.3989/revmetalm.2010.v46.i6
|
37 |
de la Fuente D, Vega J M, Viejo F, et al. Mapping air pollution effects on atmospheric degradation of cultural heritage [J]. J. Cult. Heritage, 2013, 14: 138
doi: 10.1016/j.culher.2012.05.002
|
38 |
Kambezidis H D, Kalliampakos G. Mapping atmospheric corrosion on modern materials in the Greater Athens area [J]. Water, Air, Soil Pollut., 2013, 224: 1463
|
39 |
Karaca F. Mapping the corrosion impact of air pollution on the historical peninsula of Istanbul [J]. J. Cult. Heritage, 2013, 14: 129
doi: 10.1016/j.culher.2012.04.011
|
40 |
Cole I S, King G A, Trinidad G S, et al. An Australia-wide map of corrosivity: a GIS approach [R]. Ottawa: National Research Council Canada, 1999
|
41 |
Cole I S, Ganther W D, Helal A M, et al. A corrosion map of Abu Dhabi [J]. Mater. Corros., 2013, 64: 247
|
42 |
Cole I, Corrigan P, Nguyen V H. Steel corrosion map of Vietnam [J]. Corros. Sci. Technol., 2012, 11: 103
doi: 10.14773/cst.2012.11.4.103
|
43 |
Fathoni U, Zakaria C M, Rohayu C O. Development of corrosion risk map for Peninsular Malaysia using climatic and air pollution data [J]. IOP Conf. Ser.: Earth Environ. Sci., 2013, 16: 012088
|
44 |
Sun C, Wu W T, Huang C X, et al. Atmospheric corrosion of zinc in Liaoning rural area [J]. Mater. Sci. Prog., 1992, 6: 312
|
|
孙成, 吴维, 黄春晓 等. Zn的乡村大气腐蚀 [J]. 材料科学进展, 1992, 6: 312
|
45 |
Sun C, Wu W T, Huang C X, et al. Atmospheric corrosion of Zn in Liaoning [J]. Corros. Sci. Prot. Technol., 1993, 5: 38
|
|
孙成, 吴维, 黄春晓 等. 辽宁大气腐蚀性研究—锌、铜、铝暴露两年试验结果 [J]. 腐蚀科学与防护技术, 1993, 5: 38
|
46 |
Chen H C, Yu G C, Li H X, et al. Development of atmospheric corrosion map in Shenyang [J]. Corros. Sci. Prot. Technol., 1992, 4: 195
|
|
陈鸿川, 于国才, 李洪锡 等. 沈阳市大气腐蚀图研制 [J]. 腐蚀科学与防护技术, 1992, 4: 195
|
47 |
Wang Z Y, Chen H C, Yu G C, et al. An investigation on atmospheric corrosiveness in Hainan province [J]. J. Chin. Soc. Corros. Prot., 1996, 16: 225
|
|
王振尧, 陈鸿川, 于国才 等. 海南省的大气腐蚀性调查 [J]. 中国腐蚀与防护学报, 1996, 16: 225
|
48 |
Ye D. Study on effects of air pollution on corrosion of materials in Chongqing [D]. Chongqing: Chongqing University, 2005
|
|
叶堤. 重庆市大气污染对材料腐蚀的影响研究 [D]. 重庆: 重庆大学, 2005
|
49 |
Cui M C, Mu Z C, Fu D M, et al. Speculation of carbon steel corrosion rate in atmospheric environment [J]. Corros. Prot., 2016, 37: 503
|
|
崔梦晨, 穆志纯, 付冬梅 等. 大气环境中碳钢腐蚀速率推测方法 [J]. 腐蚀与防护, 2016, 37: 503
|
50 |
Cui M C, Fu D M, Zhang M M, et al. Establishment of carbon steel corrosion rate map in atmospheric environment [A]. Proceedings of the 2014 Marine Materials Corrosion and Protection Conference [C]. Beijing, 2014: 33
|
|
崔梦晨, 付冬梅, 张苗苗 等. 大气环境下碳钢腐蚀速率地图的建立 [A]. 2014海洋材料腐蚀与防护大会 [C]. 北京, 2014: 33
|
51 |
Wang Z G, Hai C, Jiang J, et al. Corrosion behavior of Q235 steels in atmosphere at Deyang district for one year [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 871
|
|
王志高, 海潮, 姜杰 等. Q235钢在德阳大气环境中腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 871
doi: 10.11902/1005.4537.2020.180
|
52 |
Wang J, Chen J J, Xie Y, et al. Evaluation of environmental factors related with atmosphere corrosivity in Hunan Provice by atmospheric corrosion monitoring technique [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 487
|
|
王军, 陈军君, 谢亿 等. 湖南地区大气腐蚀严酷性的环境因素与大气腐蚀监测仪评定 [J]. 中国腐蚀与防护学报, 2021, 41: 487
doi: 10.11902/1005.4537.2020.103
|
53 |
Xia X J, Cai J B, Lin D Y, et al. Corrosion status, corrosion mechanisms and anti-corrosion measures in coastal substations [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 697
|
|
夏晓健, 蔡建宾, 林德源 等. 沿海变电站设备腐蚀状况及其腐蚀机理与防护 [J]. 中国腐蚀与防护学报, 2021, 41: 697
doi: 10.11902/1005.4537.2020.155
|
54 |
Ni Q Z. Corrosion research and life prediction of electricity metal materials [D]. Shanghai: Shanghai University of Electric Power, 2017
|
|
倪清钊. 电力金属材料的腐蚀研究与寿命预测 [D]. 上海: 上海电力学院, 2017
|
55 |
Huang J C, Meng X B, Zheng Z J, et al. Optimization of the atmospheric corrosivity mapping of Guangdong Province [J]. Mater. Corros., 2019, 70: 91
|
56 |
Feliu S, Morcillo M, Feliu Jr S. The prediction of atmospheric corrosion from meteorological and pollution parameters—I. Annual corrosion [J]. Corros. Sci., 1993, 34: 403
doi: 10.1016/0010-938X(93)90112-T
|
57 |
Lee D S, Holland M R, Falla N. The potential impact of ozone on materials in the U.K. [J]. Atmos. Environ., 1996, 30: 1053
doi: 10.1016/1352-2310(95)00407-6
|
58 |
Svensson J E, Johansson L G. A laboratory study of the effect of ozone, nitrogen dioxide, and sulfur dioxide on the atmospheric corrosion of zinc [J]. J. Electrochem. Soc., 1993, 140: 2210
doi: 10.1149/1.2220797
|
59 |
Liu C, Tang Q H, Wang W, et al. Applicability of atmospheric corrosion rate prediction equation for carbon steel of standard ISO 9223—2012 in typical areas of China [J]. Equip. Environ. Eng., 2017, 14(10): 74
|
|
刘聪, 唐其环, 王莞 等. ISO 9223—2012标准碳钢大气腐蚀速率预测方程在我国典型地区的适用性研究 [J]. 装备环境工程, 2017, 14(10): 74
|
60 |
Li J, Heap A D. A Review of Spatial Interpolation Methods for Environmental Scientists [M]. Geoscience Australia, 2008
|
61 |
Chen F W, Liu C W. Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan [J]. Paddy Water Environ., 2012, 10: 209
doi: 10.1007/s10333-012-0319-1
|
62 |
Ahmed S O, Mazloum R, Abou-Ali H. Spatiotemporal interpolation of air pollutants in the Greater Cairo and the Delta, Egypt [J]. Environ. Res., 2018, 160: 27
doi: S0013-9351(17)31625-0
pmid: 28941801
|
63 |
Wong D W, Yuan L, Perlin S A. Comparison of spatial interpolation methods for the estimation of air quality data [J]. J. Expo. Sci. Environ. Epidemiol., 2004, 14: 404
doi: 10.1038/sj.jea.7500338
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|