Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (1): 29-37    DOI: 10.11902/1005.4537.2022.060
Current Issue | Archive | Adv Search |
Review of Regional Atmospheric Corrosion Mapping Technologys
FAN Zhibin(), LI Xingeng, WANG Xiaoming, WANG Qian
State Grid Shandong Electric Power Research Institute, Jinan 250002, China
Download:  HTML  PDF(615KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Atmospheric corrosion map is a graphical method for describing the corrosivity of the atmospheric environment of a designated area on a geographic map, which can provide data support for the anti-corrosion design, maintenance, and life prediction of the outdoor projects. It is of great significance to save anti-corrosion cost and ensure the safety of the project. Atmospheric corrosion maps have evolved from the initial grid and contour maps to more intuitive and easy-to-read colorful maps. The development of the dose response function solves the problem that it is difficult to obtain sufficient corrosion data from the exposure test, and the atmospheric corrosion data of the target area can be calculated quickly by using the environmental data. The inverse distance weighting and kriging interpolation models are mainly used in constructing atmospheric corrosion maps to predict the assignment of data blank areas, but the relevant applicability and error analysis of the models have not been reported yet. Based on the development of atmospheric corrosion mapping technologys, the development directions of atmospheric corrosion mapping technology may be proposed as follows: the establish Dose Response Functions that reflect the corrosion mechanism of materials, with greater applicability and less error, and to study spatial interpolation models that are more suitable for atmospheric corrosion data.

Key words:  atmospheric corrosion      corrosion map      dose response function      spatial interpolation     
Received:  06 March 2022      32134.14.1005.4537.2022.060
ZTFLH:  TG174  
Fund: Science and Technology Project of State Electric Power Company Grid Shandong(5200-202016471A-0-0-00)
Corresponding Authors:  FAN Zhibin, E-mail: fan200403707@163.com

Cite this article: 

FAN Zhibin, LI Xingeng, WANG Xiaoming, WANG Qian. Review of Regional Atmospheric Corrosion Mapping Technologys. Journal of Chinese Society for Corrosion and protection, 2023, 43(1): 29-37.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.060     OR     https://www.jcscp.org/EN/Y2023/V43/I1/29

RegionOrganizationTimeData sourcesNumber of sites / piecesRegional area km2Resolution km2Graphical formInterpolation modelReferences
BritishCIRIA1971Exposed Samples318224410010×10Grid---[8, 9]
OsloNILU Norwegian Institute for Air Research1985DRF---454---Isolines---[27]
Yucatán PeninsulaCentro de InvestigacioÂn y de Estudios Avanzados, Unidad MeÂrida1999Exposed Samples14197600---Points---[10]
KoreaAndong National University2011Environmental Factors, Exposed Samples21100210---Color blocks---[11, 12]
AustraliaCSIRO1999Environmental Factors, Exposed Samples47542000---Points---[40]
Australia and VietnamCSIRO and IMS2012Environmental Factors, Exposed Samples75(Vietnam), 8 (Vietnam)7617930 (Australia), 329556 (Vietnam)5×5Color blocksEnvironment Model and Inverse Distance Weighting[42]
IndiaCentral Electrochemical Research Institute2004Exposed Samples402980000---Points---[7]
SpainCentro Nacional de Investigaciones Metalúrgicas (CENIM)2010DRF1005059250.5×0.5Color blocksKriging[36]
Abu DhabiCSIRO and ADWEA2011Environmental Factors---67340---Color blocksEnvironment Model[41]
SlovakiaUniversity of Zilina2015DRF---49037---Color blocks---[28,29]
Greater AthensNational Observatory of Athens2013DRF20412---Color blocksKriging[38]
SwitzerlandEMPA2004DRF>60412840.25×0.25Color blocksInverse Distance Weighting and Kriging[32]
European Part of RussiaRussian Academy of Sciences2002DRF---4268350150×150Grid---[34]
IstanbulFatih University2013DRF505343---Color blocksKriging[39]
Peninsular MalaysiaUniversiti Tenaga Nasional2013DRF17130590---Color blocksInverse Distance Weighting[43]
CzechSVUOM Ltd.2015DRF---788662×2Color blocksKriging[30,31]
RussiaRussian Academy of Sciences2019DRF6213170982000.5 Latitude×1 LongitudeColor blocks---[35]
Canary IslandsUniversidad de L as Palmas de Gran Canaria2016Exposed Samples397273---------[13]
ChilePontificia Universidad Católica de Valparaíso2016Exposed Samples31756626---Color blocks---[14]
Europe

Royal Institute of Technology, Sweden

Corrosion and Metals Research Institute, Sweden

2006DRF------50×50Color blocksKriging[33]
MadridCentro Nacional de Investigaciones Metalúrgicas (CENIM)2013DRF326070.5×0.5Color blocksKriging[37]
South AfricaUniversity of the Witwatersrand2019Exposed Samples1001219090---Color blocks---[15]
Table 1  Typical atmospheric corrosion maps abroad
RegionOrganizationTimeData sourcesNumber of sites / piecesRegional area / km2Resolution km2Graphical formInterpolation modelReferences
LiaoningInstitute of Metal Research, Chinese Academy of Sciences1992Exposed Samples192148600---Isolines---[44, 45]
ShenyangInstitute of Metal Research, Chinese Academy of Sciences1992Exposed Samples36164---Isolines---[46]
HainanInstitute of Metal Research, Chinese Academy of Sciences1998Exposed Samples2035400---Isolines---[47]
ChongqingChongqing University2005DRF---82402---Grid---[48]
ChinaUniversity of Science and Technology Beijing2014Exposed Samples and DRF499600000---Color blocksInverse Distance Weighting[49, 50]
FujianShanghai University of Electric Power2017Exposed Samples16124000---Color blocksInverse Distance Weighting[54]
GuangdongSouth China University of Technology2018Exposed Samples and DRF150179700---Color blocksKriging[55]
Table 2  Domestic typical atmospheric corrosion maps
1 Hou B R. The Cost of Corrosion in China [M]. Beijing: Science Press, 2017
侯保荣. 中国腐蚀成本 [M]. 北京: 科学出版社, 2017
2 Koch G H, Brongers M P H, Thompson N G, et al. Cost of corrosion in the United States [A]. Kutz M. Handbook of Environmental Degradation of Materials [M]. Norwich: William Andrew, 2005: 3
3 Li X G, Zhang D W, Liu Z Y, et al. Materials science: share corrosion data [J]. Nature, 2015, 527: 441
doi: 10.1038/527441a
4 Koch G, Varney J, Thompson N, et al. International measures of prevention, application, and economics of corrosion technologies study [R]. Houston: NACE International, 2016
5 Cao C N. Natural Environment Corrosion of Chinese Materials [M]. Beijing: Chemical Industry Press, 2005
曹楚南. 中国材料的自然环境腐蚀 [M]. 北京: 化学工业出版社, 2005
6 Tang Q H, Zhang X Y. Mapping of typical atmospheric corrosion at home and abroad [J]. Equip. Environ. Eng., 2010, 7(4): 81
唐其环, 张先勇. 国内外典型大气腐蚀图及其绘制 [J]. 装备环境工程, 2010, 7(4): 81
7 Natesan M, Venkatachari G, Palaniswamy N. Corrosivity and durability maps of India [J]. Corros. Prev. Control, 2005, 52: 43
8 Shaw T R. Corrosion map of the British isles: la pollution atmospherique-une carte de corrosion DANs LES ILEs Britanniques [A]. EnglundHM, BeeryWT. Proceedings of the Second International Clean Air Congress [M]. New York: Academic Press, 1971: 121
9 Shaw T R. Corrosion Map of the British Isles [M]. West Conshohocken: ASTM International, 1978
10 Maldonado L, Veleva L. Corrosivity category maps of a humid tropical atmosphere: the Yucatán Peninsula, México [J]. Mater. Corros., 1999, 50: 261
doi: 10.1002/(ISSN)1521-4176
11 Kim Y S, Lim H K, Kim J J, et al. Corrosion cost and corrosion map of Korea-based on the data from 2005 to 2010 [J]. Corros. Sci. Technol., 2011, 10: 52
12 Kim Y S, Lim H K, Kim J J, et al. Corrosivity of atmospheres in the Korean peninsula [J]. Corros. Sci. Technol., 2011, 10: 109
13 Santana J J, Santana J, González J E, et al. Atmospheric corrosivity map for steel in Canary Isles [J]. Br. Corros. J., 2001, 36: 266
doi: 10.1179/000705901101501721
14 Vera R, Puentes M, Araya R, et al. Mapa de corrosión atmosférica de Chile: resultados después de un año de exposición [J]. Rev. Constr., 2012, 11: 61
15 van Rensburg D T J, Cornish L A, van der Merwe J. Corrosion map of South Africa's macro atmosphere [J]. South Afr. J. Sci., 2019, 115: #4901
16 Dean S W, Reiser D B. Analysis of Long-Term Atmospheric Corrosion Results from ISO CORRAG Program [M]. West Conshohocken: ASTM International, 2002
17 Knotkova D, Boschek P, Kreislova K. Results of ISO CORRAG Program: Processing of One-Year Data in Respect to Corrosivity Classification [J]. ASTM Spec. Tech. Pub., 1995, 1239: 38
18 Chico B, De la Fuente D, Díaz I, et al. Annual atmospheric corrosion of carbon steel worldwide. An integration of ISOCORRAG, ICP/UNECE and MICAT databases [J]. Materials, 2017, 10: 601
doi: 10.3390/ma10060601
19 Kucera V, Tidblad J, Kreislova K, et al. UN/ECE ICP materials dose-response functions for the multi-pollutant situation [J]. Water, Air, Soil Pollut.: Focus, 2007, 7: 249
20 Castaño J G, Botero C A, Restrepo A H, et al. Atmospheric corrosion of carbon steel in Colombia [J]. Corros. Sci., 2010, 52: 216
doi: 10.1016/j.corsci.2009.09.006
21 Pintos S, Queipo N V, de Rincón O T, et al. Artificial neural network modeling of atmospheric corrosion in the MICAT project [J]. Corros. Sci., 2000, 42: 35
doi: 10.1016/S0010-938X(99)00054-2
22 Morcillo M. Atmospheric Corrosion in Ibero-America: The MICAT Project [J]. ASTM Spec. Tech. Pub., 1995, 1239: 257
23 Vilche J R, Varela F E, Acuña G, et al. A survey of Argentinean atmospheric corrosion: I—Aluminium and zinc samples [J]. Corros. Sci., 1995, 37: 941
doi: 10.1016/0010-938X(95)00006-6
24 Leuenberger-Minger A U, Buchmann B, Faller M, et al. Dose-response functions for weathering steel, copper and zinc obtained from a four-year exposure programme in Switzerland [J]. Corros. Sci., 2002, 44: 675
doi: 10.1016/S0010-938X(01)00097-X
25 Tidblad J, Kucera V, Mikhailov A A, et al. UN ECE ICP materials: dose-response functions on dry and wet acid deposition effects after 8 years of exposure [A]. SatakeK, ShindoJ, TakamatsuT, et al. Acid Rain 2000 [M]. Dordrecht: Springer, 2001: 1457
26 Mikhailov A A, Tidblad J, Kucera V. The classification system of ISO 9223 standard and the dose–response functions assessing the corrosivity of outdoor atmospheres [J]. Prot. Met., 2004, 40: 541
doi: 10.1023/B:PROM.0000049517.14101.68
27 Haagenrud S E, Henriksen J F, Gram F. Dose-response functions and corrosion mapping for a small geographical area [A]. Proceedings of the Fall 1985 meeting of the Electrochemical Society [C]. Las Vegas, 1985: 215
28 Kozák J, Ivašková M, Koteš P. Atmosphere aggressivity state mapping in Slovak republic for corrosion of construction materials [J]. Mater. Sci. Forum, 2015, 811: 49
doi: 10.4028/www.scientific.net/MSF.811
29 Ivaskova M, Kotes P, Brodnan M. Air pollution as an important factor in construction materials deterioration in Slovak Republic [J]. Procedia Eng., 2015, 108: 131
doi: 10.1016/j.proeng.2015.06.128
30 Kreislova K, Geiplova H, Skorepova I, et al. Method for creation of actual maps of atmospheric corrosivity for the Czech Republic [A]. Proceeding of EUROCORR 2015 [C]. Graz, Austria, 2015
31 Kreislová K, Geiplová H, Skořepová I, et al. Nové mapy korozní agresivity Èeské republiky/Up-dated maps of atmospheric corrosivity for Czech Republic [J]. KOM-Corros. Mater. Prot. J., 2015, 59: 81
32 Reiss D, Rihm B, Thöni C, et al. Mapping stock at risk and release of zinc and copper in Switzerland—dose response functions for runoff rates derived from corrosion rate data [J]. Water, Air, Soil Pollut., 2004, 159: 101
33 Wallinder I O, Bahar B, Leygraf C, et al. Modelling and mapping of copper runoff for Europe [J]. J. Environ. Monit., 2007, 9: 66
doi: 10.1039/B612041E
34 Mikhailov A A. Estimating and mapping the material corrosion losses in the European part of Russia with unified doze—response functions [J]. Prot. Met., 2002, 38: 243
doi: 10.1023/A:1015617405346
35 Panchenko Y, Marshakov A, Igonin T, et al. Corrosivity of atmosphere toward structural metals and mapping the continental Russian territory [J]. Corros. Eng., Sci. Technol., 2019, 54: 369
36 Chico B, de la Fuente D, Vega J M, et al. Corrosivity maps of Spain for zinc in rural atmospheres [J]. Rev. Metal., 2010, 46: 485
doi: 10.3989/revmetalm.2010.v46.i6
37 de la Fuente D, Vega J M, Viejo F, et al. Mapping air pollution effects on atmospheric degradation of cultural heritage [J]. J. Cult. Heritage, 2013, 14: 138
doi: 10.1016/j.culher.2012.05.002
38 Kambezidis H D, Kalliampakos G. Mapping atmospheric corrosion on modern materials in the Greater Athens area [J]. Water, Air, Soil Pollut., 2013, 224: 1463
39 Karaca F. Mapping the corrosion impact of air pollution on the historical peninsula of Istanbul [J]. J. Cult. Heritage, 2013, 14: 129
doi: 10.1016/j.culher.2012.04.011
40 Cole I S, King G A, Trinidad G S, et al. An Australia-wide map of corrosivity: a GIS approach [R]. Ottawa: National Research Council Canada, 1999
41 Cole I S, Ganther W D, Helal A M, et al. A corrosion map of Abu Dhabi [J]. Mater. Corros., 2013, 64: 247
42 Cole I, Corrigan P, Nguyen V H. Steel corrosion map of Vietnam [J]. Corros. Sci. Technol., 2012, 11: 103
doi: 10.14773/cst.2012.11.4.103
43 Fathoni U, Zakaria C M, Rohayu C O. Development of corrosion risk map for Peninsular Malaysia using climatic and air pollution data [J]. IOP Conf. Ser.: Earth Environ. Sci., 2013, 16: 012088
44 Sun C, Wu W T, Huang C X, et al. Atmospheric corrosion of zinc in Liaoning rural area [J]. Mater. Sci. Prog., 1992, 6: 312
孙成, 吴维, 黄春晓 等. Zn的乡村大气腐蚀 [J]. 材料科学进展, 1992, 6: 312
45 Sun C, Wu W T, Huang C X, et al. Atmospheric corrosion of Zn in Liaoning [J]. Corros. Sci. Prot. Technol., 1993, 5: 38
孙成, 吴维, 黄春晓 等. 辽宁大气腐蚀性研究—锌、铜、铝暴露两年试验结果 [J]. 腐蚀科学与防护技术, 1993, 5: 38
46 Chen H C, Yu G C, Li H X, et al. Development of atmospheric corrosion map in Shenyang [J]. Corros. Sci. Prot. Technol., 1992, 4: 195
陈鸿川, 于国才, 李洪锡 等. 沈阳市大气腐蚀图研制 [J]. 腐蚀科学与防护技术, 1992, 4: 195
47 Wang Z Y, Chen H C, Yu G C, et al. An investigation on atmospheric corrosiveness in Hainan province [J]. J. Chin. Soc. Corros. Prot., 1996, 16: 225
王振尧, 陈鸿川, 于国才 等. 海南省的大气腐蚀性调查 [J]. 中国腐蚀与防护学报, 1996, 16: 225
48 Ye D. Study on effects of air pollution on corrosion of materials in Chongqing [D]. Chongqing: Chongqing University, 2005
叶堤. 重庆市大气污染对材料腐蚀的影响研究 [D]. 重庆: 重庆大学, 2005
49 Cui M C, Mu Z C, Fu D M, et al. Speculation of carbon steel corrosion rate in atmospheric environment [J]. Corros. Prot., 2016, 37: 503
崔梦晨, 穆志纯, 付冬梅 等. 大气环境中碳钢腐蚀速率推测方法 [J]. 腐蚀与防护, 2016, 37: 503
50 Cui M C, Fu D M, Zhang M M, et al. Establishment of carbon steel corrosion rate map in atmospheric environment [A]. Proceedings of the 2014 Marine Materials Corrosion and Protection Conference [C]. Beijing, 2014: 33
崔梦晨, 付冬梅, 张苗苗 等. 大气环境下碳钢腐蚀速率地图的建立 [A]. 2014海洋材料腐蚀与防护大会 [C]. 北京, 2014: 33
51 Wang Z G, Hai C, Jiang J, et al. Corrosion behavior of Q235 steels in atmosphere at Deyang district for one year [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 871
王志高, 海潮, 姜杰 等. Q235钢在德阳大气环境中腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 871
doi: 10.11902/1005.4537.2020.180
52 Wang J, Chen J J, Xie Y, et al. Evaluation of environmental factors related with atmosphere corrosivity in Hunan Provice by atmospheric corrosion monitoring technique [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 487
王军, 陈军君, 谢亿 等. 湖南地区大气腐蚀严酷性的环境因素与大气腐蚀监测仪评定 [J]. 中国腐蚀与防护学报, 2021, 41: 487
doi: 10.11902/1005.4537.2020.103
53 Xia X J, Cai J B, Lin D Y, et al. Corrosion status, corrosion mechanisms and anti-corrosion measures in coastal substations [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 697
夏晓健, 蔡建宾, 林德源 等. 沿海变电站设备腐蚀状况及其腐蚀机理与防护 [J]. 中国腐蚀与防护学报, 2021, 41: 697
doi: 10.11902/1005.4537.2020.155
54 Ni Q Z. Corrosion research and life prediction of electricity metal materials [D]. Shanghai: Shanghai University of Electric Power, 2017
倪清钊. 电力金属材料的腐蚀研究与寿命预测 [D]. 上海: 上海电力学院, 2017
55 Huang J C, Meng X B, Zheng Z J, et al. Optimization of the atmospheric corrosivity mapping of Guangdong Province [J]. Mater. Corros., 2019, 70: 91
56 Feliu S, Morcillo M, Feliu Jr S. The prediction of atmospheric corrosion from meteorological and pollution parameters—I. Annual corrosion [J]. Corros. Sci., 1993, 34: 403
doi: 10.1016/0010-938X(93)90112-T
57 Lee D S, Holland M R, Falla N. The potential impact of ozone on materials in the U.K. [J]. Atmos. Environ., 1996, 30: 1053
doi: 10.1016/1352-2310(95)00407-6
58 Svensson J E, Johansson L G. A laboratory study of the effect of ozone, nitrogen dioxide, and sulfur dioxide on the atmospheric corrosion of zinc [J]. J. Electrochem. Soc., 1993, 140: 2210
doi: 10.1149/1.2220797
59 Liu C, Tang Q H, Wang W, et al. Applicability of atmospheric corrosion rate prediction equation for carbon steel of standard ISO 9223—2012 in typical areas of China [J]. Equip. Environ. Eng., 2017, 14(10): 74
刘聪, 唐其环, 王莞 等. ISO 9223—2012标准碳钢大气腐蚀速率预测方程在我国典型地区的适用性研究 [J]. 装备环境工程, 2017, 14(10): 74
60 Li J, Heap A D. A Review of Spatial Interpolation Methods for Environmental Scientists [M]. Geoscience Australia, 2008
61 Chen F W, Liu C W. Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan [J]. Paddy Water Environ., 2012, 10: 209
doi: 10.1007/s10333-012-0319-1
62 Ahmed S O, Mazloum R, Abou-Ali H. Spatiotemporal interpolation of air pollutants in the Greater Cairo and the Delta, Egypt [J]. Environ. Res., 2018, 160: 27
doi: S0013-9351(17)31625-0 pmid: 28941801
63 Wong D W, Yuan L, Perlin S A. Comparison of spatial interpolation methods for the estimation of air quality data [J]. J. Expo. Sci. Environ. Epidemiol., 2004, 14: 404
doi: 10.1038/sj.jea.7500338
[1] WANG Yang, LIU Yuanhai, MU Xianlian, LIU Miaoran, WANG Jun, LI Qiuping, CHEN Chuan. Effect of Environmental Factors on Material Transfer in Thin Liquid Film During Atmospheric Corrosion Process in Marine Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1015-1021.
[2] HAO Wenkui, CHEN Xin, XU Lingling, HAN Yu, CHEN Yun, HUANG Luyao, ZHU Zhixiang, YANG Bingkun, WANG Xiaofang, ZHANG Qiang. Drawing of Atmospheric Corrosion Map of Carbon Steel and Galvanized Steel for Power Grid[J]. 中国腐蚀与防护学报, 2023, 43(4): 795-802.
[3] LI Lemin, ZHANG Jie, BIAN Yafei, MIAO Chunhui, CHEN Guohong, TANG Wenming. Atmospheric Corrosion Characteristics and Regularity of the Q235, 40Cr Steels Commonly-used in Power Grid Equipment in Anhui Province[J]. 中国腐蚀与防护学报, 2023, 43(3): 535-543.
[4] ZHOU Mengxin, WU Jun, FAN Zhibin, ZHOU Xuejie, CHEN Hao. Current Situation and Prospect of On-line Monitoring Technology for Atmospheric Corrosion Testing of Metallic Materials[J]. 中国腐蚀与防护学报, 2023, 43(1): 38-46.
[5] XIA Xiaojian, WAN Xinyuan, GAO Yan, WANG Qiwei, YAN Kanghua, CHEN Yunxiang, HONG Yicheng, ZHANG Junxi. Corrosion Characteristics of Atmospheric Corrosion of 1050 Al-alloy under Power-on Condition[J]. 中国腐蚀与防护学报, 2022, 42(6): 1065-1069.
[6] FAN Yi, YANG Wenxiu, WANG Jun, CAI Jiaxing, MA Hongchi. Corrosion Behavior of Q690qE Steel in a Simulated Coastal-industrial Environment[J]. 中国腐蚀与防护学报, 2022, 42(4): 669-674.
[7] MA Xiaoze, MENG Lingdong, CAO Xiangkang, XIAO Song, DONG Zehua. Influence of Co-deposition of Pollutant Particulates Ammonium Sulfate and Sodium Chloride on Atmospheric Corrosion of Copper of Printed Circuit Board[J]. 中国腐蚀与防护学报, 2022, 42(4): 540-550.
[8] CUI Zhongyu, GE Feng, WANG Xin. Corrosion Mechanism of Materials in Three Typical Harsh Marine Atmospheric Environments[J]. 中国腐蚀与防护学报, 2022, 42(3): 403-409.
[9] WANG Zhigao, HAI Chao, JIANG Jie, LAN Xinsheng, DU Cuiwei, LI Xiaogang. Corrosion Behavior of Q235 Steels in Atmosphere at Deyang District for one Year[J]. 中国腐蚀与防护学报, 2021, 41(6): 871-876.
[10] XIA Xiaojian, CAI Jianbin, LIN Deyuan, WAN Xinyuan, LI Yangsen, ZHANG Biaohua, CHEN Yunxiang, HAN Jiceng, ZOU Zhimin, JIANG Chunhai. Corrosion Status, Corrosion Mechanisms and Anti-corrosion Measures in Coastal Substations[J]. 中国腐蚀与防护学报, 2021, 41(5): 697-704.
[11] WANG Jun, CHEN Junjun, XIE Yi, XU Song, LIU Lanlan, WU Tangqing, YIN Fucheng. Evaluation of Environmental Factors Related with Atmosphere Corrosivity in Hunan Provice by Atmospheric Corrosion Monitoring Technique[J]. 中国腐蚀与防护学报, 2021, 41(4): 487-492.
[12] CHEN Wenjuan, FANG Lian, PAN Gang. Corrosion Evolution Characteristics of Q235B Steel in O3/SO2 Composite Atmosphere[J]. 中国腐蚀与防护学报, 2021, 41(4): 450-460.
[13] FAN Yi,CHEN Linheng,CAI Jiaxing,DAi Qinqin,MA Hongchi,CHENG Xuequn. Corrosion Behavior of Hot-rolled AH36 Plate in Indoor Storage Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[14] PAN Chengcheng,MA Chao,XIA Dahai. Estimation for Relevance of Atmospheric Corrosion Initiation with Surface Texture of Several Metallic Materials by Electron Backscattering Diffraction[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[15] ZHAO Jinbin,ZHAO Qiyue,CHEN Linheng,HUANG Yunhua,CHENG Xuequn,LI Xiaogang. Effect of Different Surface Treatments on Corrosion Behavior of 300M Steel in Qingdao Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
No Suggested Reading articles found!