Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (5): 826-832    DOI: 10.11902/1005.4537.2021.258
Current Issue | Archive | Adv Search |
Corrosion Resistance of Welded Joints of Q690 Bainite Bridge Steel in Simulated Rural Atmosphere
WANG Xinyu, HUANG Feng(), LIU Haixia, YUAN Wei, LIU Jing
Hubei Engineering Technology Research Center of Marine Materials and Service Safety, State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
Download:  HTML  PDF(10570KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of Q690 bainitic bridge steel and its welded joints in a simulated rural atmospheric environment were studied via cyclically wetting and drying method, electrochemical testing, X-ray diffraction (XRD), field emission electron probe micro analysis (FE-EPMA) and other modern surface analysis techniques. The results showed that the corrosion processes of Q690 steel and its welded joint may be differentiated as two stages, namely, the accelerated corrosion stage with n>1 and the deceleration corrosion stage with n<1. In the early stage of corrosion, owing to the obvious microstructure differences among BM (base metal), HAZ (heat affected zone) and WZ (weld zone) of Q690 steel welded joint, galvanic corrosion could emerge, i.e., WZ and HAZ act as anode and BM as cathode, resulting in worse corrosion resistance of the former two, in the contrast to BM. In the later stage of corrosion, as the stable rust layer formed, the difference in corrosion resistance between Q690 steel and welded joints was reduced.

Key words:  690 MPa grade bainite steel      welded joints      rural atmosphere      periodic infiltrationcorrosion      polarization curve     
Received:  24 September 2021     
ZTFLH:  TG174  
Fund: Innovation group of Hubei Province Natural Science Foundation(2021CFA023)
Corresponding Authors:  HUANG Feng     E-mail:  huangfeng@wust.edu.cn
About author:  HUANG Feng, E-mail: huangfeng@wust.edu.cn

Cite this article: 

WANG Xinyu, HUANG Feng, LIU Haixia, YUAN Wei, LIU Jing. Corrosion Resistance of Welded Joints of Q690 Bainite Bridge Steel in Simulated Rural Atmosphere. Journal of Chinese Society for Corrosion and protection, 2022, 42(5): 826-832.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.258     OR     https://www.jcscp.org/EN/Y2022/V42/I5/826

Fig.1  Schematic diagram of the cross-section of the welded joint
Fig.2  Microstructure of Q690 welded joint in different areas: (a) BM, (b) HAZ, (c) WM
Fig.3  Average corrosion rates of Q690 steel and its welded joints over time
Fig.4  Macro morphologies of the surface of Q690 steel (a, c) and Q690 steel welded joint (b, d) samples after different immersion times rusted sample (a, b) and de-rusted sample (c, d)
Fig.5  Cross-sectional morphology and element distribution of the rust layer of Q690 steel (a) and welded joint (b) at 768 h
Fig.6  XRD patterns of corrosion products of two steel samples with different immersion times
Fig.7  Open circuit potential of different areas of the Q690 welded joint changes with time
Fig.8  Potential polarization curves of Q690 steel welded joint
SampleIcorr / A·cm-2Ecorr / V
BM4.7207×10-7-0.25115
HAZ4.7596×10-7-0.29750
WM9.7629×10-7-0.43014
Table 1  Potential polarization parameters table
Fig.9  Linear polarization curves of Q690 steel welded joint
Fig.10  Niquist (a) and Bode (b) plots and equivalent circuit (c) of Q690 welded joints in different areas
Fig.11  Q690 welded joint (a) and Q690 steel (b) corrosion depth-time double logarithmic curves
1 Hou Z G, Chen L Y, Wang J J, et al. Microstructure and mechanical properties of 05CuPCrNi weathering steel welded joint with solid wire and flux-cored wire [J]. Weld. Technol., 2021, 50(5): 95
侯振国, 陈丽园, 王金金 等. 实心和药芯焊丝05CuPCrNi耐候钢焊接接头的组织和力学性能 [J]. 焊接技术, 2021, 50(5): 95
2 Wang Y X, Tsutsumi S, Kawakubo T, et al. Microstructure and mechanical properties of weathering mild steel joined by friction stir welding [J]. Mater. Sci. Eng., 2021, 823A: 141715
3 Gong L H, Xing Q, Wang H H. Corrosion behaviors of weathering steel 09CuPCrNi welded joints in simulated marine atmospheric environment [J]. Anti-Corros. Methods Mater., 2016, 63: 295
doi: 10.1108/ACMM-10-2014-1443
4 Chao Y L, Zhou Y L, Wang Q L, et al. Corrosion performance of welded joint and base steel of Cu-P-Cr weathering steel by cyclic immersion in NaHSO3 solution [J]. Trans. Mater. Heat Treat., 2015, 36(2): 84
晁月林, 周玉丽, 王全礼 等. Cu-P-Cr钢及其焊接接头的周期腐蚀性能 [J]. 材料热处理学报, 2015, 36(2): 84
5 Wang J, Feng C, Peng B C, et al. Corrosion behavior of weld joint of S450EW steel in NaHSO3 solution [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 575
王军, 冯超, 彭碧草 等. S450EW焊接接头在NaHSO3溶液中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2017, 37: 575
6 Liu P, Han S G, Yi Y Y, et al. Corrosion behavior of welded joint of Q690 with CMT twin [J]. Int. J. Corros., 2018, 2018: 2368717
7 Zhuo X, Li L X, An T B, et al. Study on corrosion behavior of Q420qFNH weathering bridge steel welded joint [J]. Hot Work. Technol., 2021, 50(15): 20
卓晓, 李立新, 安同邦 等. Q420qFNH耐候桥梁钢焊接接头的腐蚀行为研究 [J]. 热加工工艺, 2021, 50(15): 20
8 Zhang T Y, Liu W, Chowwanonthapunya T, et al. Corrosion evolution and analysis of welded joints of structural steel performed in a tropical marine atmospheric environment [J]. J. Mater. Eng. Perf., 2020, 29: 5057
doi: 10.1007/s11665-020-05045-9
9 Huang C, Huang F, Liu H X, et al. The galvanic effect of high-strength weathering steel welded joints and its influence on corrosion resistance [J]. Corros. Eng. Sci. Technol., 2019, 54: 556
doi: 10.1080/1478422X.2019.1636484
10 Liu H X, Huang F, Yuan W, et al. Corrosion behavior of 690 MPa grade high strength bainite steel in a simulated rural atmosphere [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 416
刘海霞, 黄峰, 袁玮 等. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2020, 40: 416
11 Wu W, Dai Z Y, Liu Z Y, et al. Synergy of Cu and Sb to enhance the resistance of 3%Ni weathering steel to marine atmospheric corrosion [J]. Corros. Sci., 2021, 183: 109353
doi: 10.1016/j.corsci.2021.109353
12 State Administration of Market Supervision and Administration of the People's Republic of China, Administration Standardization. Corrosion of metals and alloys—Alternate immersion test in salt solution [S]. Beijing: Standards Press of China, 2018
国家市场监督管理总局, 中国国家标准化管理委员会. 金属和合金的腐蚀 盐溶液周浸试验 [S]. 北京: 中国标准出版社, 2018
13 Liu T, Wang S M, Zhao X J. Stabilization treatment and formation of rust layer on weathering steel [J]. China Surf. Eng., 2019, 32(6): 98
刘涛, 王胜民, 赵晓军. 耐候钢锈层的稳定化处理及锈层形成 [J]. 中国表面工程, 2019, 32(6): 98
14 Wang Z Y, Yu Q C, Chen J J, et al. Atmospheric corrosion behavior of P265GH steel and Q235 steel under dry/humid/immersion alternative condition [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 53
王振尧, 于全成, 陈军君 等. 周期干湿浸条件下P265GH钢和Q235钢的大气腐蚀行为 [J]. 中国腐蚀与防护学报, 2014, 34: 53
15 Zhu J Y, Xu L N, Feng Z C, et al. Galvanic corrosion of a welded joint in 3Cr low alloy pipeline steel [J]. Corros. Sci., 2016, 111: 391
doi: 10.1016/j.corsci.2016.05.032
16 Zhou L J, Dong Y, Yang S W. Corrosion behavior of submerged arc welded joint of E550 steel in simulated marine atmospheric environment [J]. Trans. Mater. Heat Treat., 2020, 41(4): 173
周鲁军, 董毅, 杨善武. E550钢埋弧焊接接头在模拟海洋大气环境中的腐蚀行为 [J]. 材料热处理学报, 2020, 41(4): 173
17 Hu J Y, Cao S A, Xie J L. Effect of rust layer on the corrosion behavior of carbon steel in reverse osmosis product water [J]. Acta Phys.-Chim. Sin., 2012, 28: 1153
doi: 10.3866/PKU.WHXB201203022
胡家元, 曹顺安, 谢建丽. 锈层对海水淡化一级反渗透产水中碳钢腐蚀行为的影响 [J]. 物理化学学报, 2012, 28: 1153
18 Ma Y T, Li Y, Wang F H. The atmospheric corrosion kinetics of low carbon steel in a tropical marine environment [J]. Corros. Sci., 2010, 52: 1796
doi: 10.1016/j.corsci.2010.01.022
19 Huang F, Zhu T W, Zhou X J, et al. Indoor accelerated corrosion kinetics of weathering steel and its service life prediction [J]. Corrosion, 2014, 70: 819
doi: 10.5006/1196
20 Wang Z H, Zhang X, Cheng L, et al. Role of inclusion and microstructure on corrosion initiation and propagation of weathering steels in marine environment [J]. J. Mater. Res. Technol., 2021, 10: 306
doi: 10.1016/j.jmrt.2020.11.096
21 Dillmann P, Mazaudier F, Hœrlé S. Advances in understanding atmospheric corrosion of iron. I. Rust characterisation of ancient ferrous artefacts exposed to indoor atmospheric corrosion [J]. Corros. Sci., 2004, 46: 1401
doi: 10.1016/j.corsci.2003.09.027
[1] WEN Jiayuan, SONG Guihong, WEI Xiaoyuan, ZHAO Xin, WU Yusheng, DU Hao, HE Chunlin. Influence of Cr Content on Corrosion Resistance of Composite Ni/Ni-Cr/Ni-Cr-Al-Si Films on Cu[J]. 中国腐蚀与防护学报, 2022, 42(4): 638-646.
[2] LI Xujia, HUI Honghai, ZHAO Junwen, WU Guoqiang, DAI Guangze. Effect of MWCNTs Content on Corrosion Resistance of Chromium-free Zinc-aluminum Coatings[J]. 中国腐蚀与防护学报, 2022, 42(2): 324-330.
[3] WANG Qixuan, LYU Wensheng, YANG Peng, ZHU Liyi, LIAO Wenjing, ZHU Yuanle. Corrosion of Stainless Steel Shell of Embedded Sensor in Tailings Pond[J]. 中国腐蚀与防护学报, 2022, 42(2): 331-337.
[4] DING Cong, ZHANG Jinling, YU Yanchong, LI Yelei, WANG Shebin. Corrosion Kinetics of A572Gr.65 Steel in Different Simulated Soil Solutions[J]. 中国腐蚀与防护学报, 2022, 42(1): 149-155.
[5] LIU Haixia, HUANG Feng, YUAN Wei, HU Qian, LIU Jing. Corrosion Behavior of 690 MPa Grade High Strength Bainite Steel in a Simulated Rural Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[6] LI Ziyun, WANG Gui, LUO Siwei, DENG Peichang, HU Jiezhen, DENG Junhao, XU Jingming. Early Corrosion Behavior of EH36 Ship Plate Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 463-468.
[7] SUN Shuo, YANG Jie, QIAN Xinzhu, CHANG Renli. Preparation and Electrochemical Corrosion Behavior of Electroless Plated Ni-Cr-P Alloy Coating[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[8] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[9] Mingyuan JIAO, Weiliang JIN, Jianghong MAO, Teng LI, Jin XIA. Effect of Concrete Inner Environment on Hydrogen Evolution of Rebar During ElectrochemicalRemediation[J]. 中国腐蚀与防护学报, 2018, 38(5): 463-470.
[10] Zengyi SONG, Li LIU, Li DENG, Yuan SUN, Yizhou ZHOU. Electrochemical Dissolution Behavior of N5 Nickel-based Single Crystal Superalloy in Aqua Regia Electrolyte[J]. 中国腐蚀与防护学报, 2018, 38(4): 365-372.
[11] Meng MEI, Hongai ZHENG, Huida CHEN, Ming ZHANG, Daquan ZHANG. Effect of Sulfate Reducing Bacteria on Corrosion Behavior of Cu in Circulation Cooling Water System[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[12] Teng LI, Weiliang JIN, Chen XU, Jianghong MAO. Determination of Steady Critical Current Density of Hydrogen Evolution During Electrochemical Repair Process of Reinforced Concrete[J]. 中国腐蚀与防护学报, 2017, 37(4): 382-388.
[13] Yun DAI,Shengdan LIU,Yunlai DENG,Xinming ZHANG. Pitting Corrosion of 7020 Aluminum Alloy in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2017, 37(3): 279-286.
[14] Zhixiao XU,Herong ZHOU,Wang YAO. Corrosion Behavior of Automotive Cold Rolled Steels DC06 and DP600 in NaHSO3 Solution[J]. 中国腐蚀与防护学报, 2017, 37(2): 155-161.
[15] Weihang MIAO,Wenbin HU,Zhiming GAO,Xiangang KONG,Ru ZHAO,Junwu TANG. Corrosion Behavior of 304SS in Simulated Pore Solution of Concrete for Use in Marine Environment[J]. 中国腐蚀与防护学报, 2016, 36(6): 543-548.
No Suggested Reading articles found!