Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (3): 425-434    DOI: 10.11902/1005.4537.2021.161
Current Issue | Archive | Adv Search |
Comparison of Corrosion Resistance of CoCrFeMnNi High Entropy Alloys with Pipeline Steels in an Artificial Alkaline Soil Solution
ZHAO Baozhu, ZHU Min(), YUAN Yongfeng, GUO Shaoyi, YIN Simin
School of Mechanical Engineering and Automation, Zhejiang Sci-Tech University, Hangzhou 310018, China
Download:  HTML  PDF(11429KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The difference in the corrosion resistance between the as-cast and heat treated equiatomic CoCrFeMnNi high entropy alloy (HEA) and hot rolled X80 and X100 pipeline steels in a simulated alkaline soil solution was investigated by immersion test, electrochemical tests, XPS and AFM. The results show that the high entropy alloy exhibits the characteristics of local corrosion, and few pits are sporadically distributed on its surface, while X80 and X100 pipeline steels display the characteristics of severe general corrosion, with large size corrosion pits. Moreover, the passive film of HEA is compact and stable, and contains more Cr oxide, bound water and less FeO, which is conducive to increasing its corrosion resistance, whereas the passive film of pipeline steel is thinner and defective, and has poor protective ability. The corrosion resistance of the HEA before and after heat treatment is all better than those of X80 and X100 pipeline steels, and the corrosion resistance of the HEA can be further improved by heat treatment.

Key words:  HEA      pipeline steel      corrosion resistance      pitting corrosion      passive film     
Received:  13 July 2021     
ZTFLH:  TG142  
Fund: Natural Science Foundation of Zhejiang Province of China(LY18E010004);Science and Technology Plan Projects of State Administration for Market Regulation(2019MK134)
Corresponding Authors:  ZHU Min     E-mail:  zmii2009@163.com
About author:  ZHU Min, E-mail: zmii2009@163.com

Cite this article: 

ZHAO Baozhu, ZHU Min, YUAN Yongfeng, GUO Shaoyi, YIN Simin. Comparison of Corrosion Resistance of CoCrFeMnNi High Entropy Alloys with Pipeline Steels in an Artificial Alkaline Soil Solution. Journal of Chinese Society for Corrosion and protection, 2022, 42(3): 425-434.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.161     OR     https://www.jcscp.org/EN/Y2022/V42/I3/425

Fig.1  Microstructures of as-cast HEA (a), heat-treated HEA (b), X80 steel (c) and X100 steel (d)
Fig.2  XRD image of as-cast HEA and heat-treated HEA
Fig.3  Open circuit potential of HEA and pipeline steels in Na2CO3/NaHCO3 solution
Fig.4  Potentiodynamic polarization curves (a), Ip and Ecorr (b) of HEA and pipeline steels in Na2CO3/NaHCO3 solution
Fig.5  Nyquist (a) and Bode (b, c) plots of HEA and pipeline steels in alkaline soil simulation solution
Fig.6  Equivalent circuit for fitting EIS data
SampleRs / Ω·cm2Rf / 104 Ω·cm2Qf / 10-5 Ω-1·cm-2·s-nQdl / 10-5 Ω-1·cm-2·s-nRct / 105 Ω·cm2
As-cast HEA4.9412.913.7615.4370.472
Heat-treated HEA4.2166.262.433.222.93
X80 steel4.3350.726.3331.020.295
X100 steel4.1590.666.84636.630.196
Table 1  Fitted electrochemical parameters for EIS diagrams of HEA and pipeline steels
Fig.7  Mott-Schottky plots (a), carrier densities (b) and thickness (c) of passive films on HEA and pipeline steels in alkaline soil simulation solution
Fig.8  2D (a1~c1) and 3D (a2~c2) morphologies and transversal plots (a3~c3) of passive films on heat-treated HEA (a), X80 steel (b) and X100 steel (c)
Fig.9  XPS spectra of passive films on as-cast HEA and heat-treated HEA: (a) Co 2p3/2, (b) Cr 2p3/2, (c) Fe 2p3/2, (d) Mn 2p3/2, (e) Ni 2p3/2, (f) O 1s
Fig.10  Composition ratio of passive films on as-cast HEA and heat-treated HEA
Fig.11  Corrosion morphologies of as-cast HEA soaked for 14 d (a, b), heat-treated HEA soaked for 14 d (c, d), X80 steel soaked for 7 d (e, f), X80 steel soaked for 14 d (g, h) and X100 steel soaked for 14 d (i, j) in alkaline soil simulation solution
Fig.12  Average corrosion rates of HEA and pipeline steels in alkaline soil simulated solution
1 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
2 Xiang C, Wang J Z, Fu H M, et al. Corrosion behavior of several high-entropy alloys in high temperature high pressure water [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 107
向超, 王家贞, 付华萌等. 几种高熵合金在核电高温高压水中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2016, 36: 107
3 He J Y, Zhu C, Zhou D Q, et al. Steady state flow of the FeCoNiCrMn high entropy alloy at elevated temperatures [J]. Intermetallics, 2014, 55: 9
4 Zhu M, Yao L J, Liu Y Q, et al. Microstructure evolution and mechanical properties of a novel CrNbTiZrAlx (0.25≤x≤1.25) eutectic refractory high-entropy alloy [J]. Mater. Lett., 2020, 272: 127869
5 Jayaraj J, Thinaharan C, Ningshen S, et al. Corrosion behavior and surface film characterization of TaNbHfZrTi high entropy alloy in aggressive nitric acid medium [J]. Intermetallics, 2017, 89: 123
6 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, 375-377A: 213
7 Liu T K, Wu Z, Stoica A D, et al. Twinning-mediated work hardening and texture evolution in CrCoFeMnNi high entropy alloys at cryogenic temperature [J]. Mater. Des., 2017, 131: 419
8 Otto F, Dlouhý A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy [J]. Acta Mater., 2013, 61: 5743
9 Li R D, Niu P D, Yuan T C, et al. Selective laser melting of an equiatomic CoCrFeMnNi high-entropy alloy: Processability, non-equilibrium microstructure and mechanical property [J]. J. Alloy.Compd., 2018, 746: 125
10 Chew Y, Bi G J, Zhu Z G, et al. Microstructure and enhanced strength of laser aided additive manufactured CoCrFeNiMn high entropy alloy [J]. Mater. Sci. Eng., 2019, 744A: 137
11 Jo M C, Lee S G, Sohn S S, et al. Effects of coiling temperature and pipe-forming strain on yield strength variation after ERW pipe forming of API X70 and X80 linepipe steels [J]. Mater. Sci. Eng., 2017, 682A: 304
12 Sha Q Y, Li D H. Microstructure, mechanical properties and hydrogen induced cracking susceptibility of X80 pipeline steel with reduced Mn content [J]. Mater. Sci. Eng., 2013, 585A: 214
13 Han S Y, Sohn S S, Shin S Y, et al. Effects of microstructure and yield ratio on strain hardening and Bauschinger effect in two API X80 linepipe steels [J]. Mater. Sci. Eng., 2012, 551A: 192
14 Arora K S, Pandu S R, Shajan N, et al. Microstructure and impact toughness of reheated coarse grain heat affected zones of API X65 and API X80 linepipe steels [J]. Int. J. Press. Vess. Pip., 2018, 163: 36
15 Li C Y, Chen X, He C, et al. Alternating current induced corrosion of buried metal pipeline: a review [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 139
李承媛, 陈旭, 何川等. 埋地金属管道交流电腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 139
16 Li Z, Wan H X, Song D D, et al. Corrosion behavior of X80 pipeline steel in the presence of Brevibacterium halotolerans in Beijing soil [J]. Bioelectrochemistry, 2019, 126: 121
17 Arzaghi E, Chia B H, Abaei M M, et al. Pitting corrosion modelling of X80 steel utilized in offshore petroleum pipelines [J]. Process Saf. Environ., 2020, 141: 135
18 Wen L H, Kou H C, Li J S, et al. Effect of aging temperature on microstructure and properties of AlCoCrCuFeNi high-entropy alloy [J]. Intermetallics, 2009, 17: 266
19 Zhu Z G, Ma K H, Yang X, et al. Annealing effect on the phase stability and mechanical properties of (FeNiCrMn)(100-x)Cox high entropy alloys [J]. J. Alloy. Compd., 2017, 695: 2945
20 Lin C M, Tsai H L. Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy [J]. Intermetallics, 2011, 19: 288
21 Ye Q F, Feng K, Li Z G, et al. Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating [J]. Appl. Surf. Sci., 2017, 396: 1420
22 Yen C C, Lu H N, Tsai M H, et al. Corrosion mechanism of annealed equiatomic AlCoCrFeNi tri-phase high-entropy alloy in 0.5 M H2SO4 aerated aqueous solution [J]. Corros. Sci., 2019, 157: 462
23 Yang J, Wu J, Zhang C Y, et al. Effects of Mn on the electrochemical corrosion and passivation behavior of CoFeNiMnCr high-entropy alloy system in H2SO4 solution [J]. J. Alloy. Compd., 2020, 819: 152943
24 Gwalani B, Choudhuri D, Liu K M, et al. Interplay between single phase solid solution strengthening and multi-phase strengthening in the same high entropy alloy [J]. Mater. Sci. Eng., 2020, 771A: 138620
25 Quiambao K F, McDonnell S J, Schreiber D K, et al. Passivation of a corrosion resistant high entropy alloy in non-oxidizing sulfate solutions [J]. Acta Mater., 2019, 164: 362
26 Zhu M, Zhang Q, Zhao B Z, et al. Effect of potential on the characteristics of passive film on a CoCrFeMnNi high-entropy alloy in carbonate/bicarbonate solution [J]. J. Mater. Eng. Perform., 2021, 30: 918
27 Parkins R N. Mechanistic aspects of intergranular stress corrosion cracking of ferritic steels [J]. Corrosion, 1996, 52: 363
28 Yang Y, Cheng Y F. Passivity degradation and photocorrosion of X52 carbon steel under visible light illumination in concentrated carbonate/bicarbonate solutions [J]. Corros. Sci., 2020, 172: 108727
29 Song L F, Liu Z Y, Li X G, et al. Characteristics of hydrogen embrittlement in high-pH stress corrosion cracking of X100 pipeline steel in carbonate/bicarbonate solution [J]. Constr. Build. Mater., 2020, 263: 120124
30 Fu A Q, Cheng Y F. Electrochemical polarization behavior of X70 steel in thin carbonate/bicarbonate solution layers trapped under a disbonded coating and its implication on pipeline SCC [J]. Corros. Sci., 2010, 52: 2511
31 Zhu M, Zhao B Z, Yuan Y F, et al. Study on corrosion behavior and mechanism of CoCrFeMnNi HEA interfered by AC current in simulated alkaline soil environment [J]. J. Electroanal. Chem., 2021, 882: 115026
32 Ran D, Meng H M, Liu X, et al. Effect of pH on corrosion behavior of 14Cr12Ni3WMoV stainless steel in chlorine-containing solutions [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 51
冉斗, 孟惠民, 刘星等. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 51
33 Zhao Y, Liang P, Shi Y H, et al. Comparison of passive films on X100 and X80 pipeline steels in NaHCO3 solution [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 455
赵阳, 梁平, 史艳华等. NaHCO3溶液中X100和X80管线钢钝化膜性能比较 [J]. 中国腐蚀与防护学报, 2013, 33: 455
34 Heine B, Kirchheim R. Dissolution rates of iron and chromium and FeCr alloys in the passive state [J]. Corros. Sci., 1990, 31: 533
35 Qi K, Li R F, Wang G J, et al. Microstructure and corrosion properties of laser-welded SAF 2507 super duplex stainless steel joints [J]. J. Mater. Eng. Perform., 2019, 28: 287
36 Dong C F, Liu Z Y, Li X G, et al. Effects of hydrogen-charging on the susceptibility of X100 pipeline steel to hydrogen induced cracking [J]. Int. J. Hydrog. Energy, 2009, 34: 9879
37 Wang Y, Jin J S, Zhang M, et al. Effect of the grain size on the corrosion behavior of CoCrFeMnNi HEAs in a 0.5 M H2SO4 solution [J]. J. Alloy. Compd., 2021, 858: 157712
38 Wang T, Wan Z P, Li Z, et al. Effect of heat treatment parameters on microstructure and hot workability of as-cast fine grain ingot of GH4720Li alloy [J]. Acta Metall. Sin., 2020, 56: 182
王涛, 万志鹏, 李钊等. 热处理工艺对GH4720Li合金细晶铸锭组织与热加工性能的影响 [J]. 金属学报, 2020, 56: 182
39 Chumlyakov Y I, Kireeva I V, Korotaev A D, et al. Mechanisms of plastic deformation, hardening, and fracture in single crystals of nitrogen-containing austenitic stainless steel [J]. Russ. Phys. J., 1996, 39: 189
40 Cao C N. On the impedance plane displays for irreversible electrode reactions based on the stability conditions of the steady-state—I. One state variable besides electrode potential [J]. Electrochim. Acta, 1990, 35: 831
41 Luan H, Meng F D, Liu L, et al. Preparation and anticorrosion performance of m-phenylenediamine-graphene oxide/organic coating [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 161
栾浩, 孟凡帝, 刘莉等. 间苯二胺-氧化石墨烯/有机涂层的制备及防腐性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 161
42 Wang W R, Wang J Q, Sun Z H, et al. Effect of Mo and aging temperature on corrosion behavior of (CoCrFeNi)100-xMox high-entropy alloys [J]. J. Alloy. Compd., 2020, 812: 152139
43 Shi K Y, Wu W J, Zhang Y, et al. Electrochemical properties of Nb coating on TC4 substrate in simulated body solution [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 71
史昆玉, 吴伟进, 张毅等. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 71
44 Luo H, Zou S W, Chen Y H, et al. Influence of carbon on the corrosion behaviour of interstitial equiatomic CoCrFeMnNi high-entropy alloys in a chlorinated concrete solution [J]. Corros. Sci., 2020, 163: 108287
45 Ahn S, Kwon H, Macdonald D D. Role of chloride ion in passivity breakdown on iron and nickel [J]. J. Electrochem. Soc., 2005, 152: B482
46 Luo H, Li Z M, Mingers A M, et al. Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution [J]. Corros. Sci., 2018, 134: 131
47 Zhang Y S, Zhu X M. Electrochemical polarization and passive film analysis of austenitic Fe-Mn-Al steels in aqueous solutions [J]. Corros. Sci., 1999, 41: 1817
48 Lu Y S, Lu C W, Lin Y T, et al. Corrosion behavior and passive film characterization of Fe50Mn30Co10Cr10 dual-phase high-entropy alloy in sulfuric acid solution [J]. J. Electrochem. Soc., 2020, 167: 081506
49 Shi Y Z, Collins L, Balke N, et al. In-situ electrochemical-AFM study of localized corrosion of AlxCoCrFeNi high-entropy alloys in chloride solution [J]. Appl. Surf. Sci., 2018, 439: 533
50 Okamoto G. Passive film of 18-8 stainless steel structure and its function [J]. Corros. Sci., 1973, 13: 471
51 Li Y, Cheng Y F. Passive film growth on carbon steel and its nanoscale features at various passivating potentials [J]. Appl. Surf. Sci., 2017, 396: 144
52 Zhou J L, Li X G, Du C W, et al. Passivation process of X80 pipeline steel in bicarbonate solutions [J]. Int. J. Miner. Metall. Mater., 2011, 18: 178
53 Li D G, Zhu J W, Zheng M S, et al. Photo-electrochemical characterization of passive film formed on X80 pipeline steel [J]. Acta Metall. Sin., 2008, 44: 739
李党国, 朱杰武, 郑茂盛等. X80管线钢钝化膜的光电化学性能 [J]. 金属学报, 2008, 44: 739
54 Huang T, Xu C X, Yang L J, et al. Effect of Zr addition on microstructure and corrosion behavior of Mg-3Zn-1Y alloys [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 219
[1] CHEN Hao, FAN Zhibin, CHEN Zhijian, ZHOU Xuejie, ZHENG Penghua, WU Jun. Effect of Cl- and HSO3- on Corrosion Behavior of 439 Stainless Steel Used in Construction[J]. 中国腐蚀与防护学报, 2022, 42(3): 493-500.
[2] ZHANG Keqian, ZHANG Hua, LI Yang, HONG Ye, HE Cheng. Corrosion of Electrode Materials in Joule Heated Melter[J]. 中国腐蚀与防护学报, 2022, 42(3): 458-463.
[3] YU Shuaixian, WU Yajun, WU Haisheng, WU Liang, MA Yanlong, DENG Shengwei, SUN Lidong. Optimization of Titanate Modified Silane Coatings and Their Effect on Corrosion Resistance of 5056 Aluminum Foils[J]. 中国腐蚀与防护学报, 2022, 42(3): 378-386.
[4] LI Ling, DU Xiran, QU Pinquan, LI Jiancheng, WANG Jinlong, GU Yan, ZHANG Jia, CHEN Minghui, WANG Fuhui. Effect of Vacuum Heat Treatment on Oxidation Behavior of Arc Ion Plated NiCoCrAlY Coatings[J]. 中国腐蚀与防护学报, 2022, 42(2): 243-248.
[5] LI Ping. Research on Initial Corrosion Behavior of X60 Pipeline Steel in Simulated Tidal Zone[J]. 中国腐蚀与防护学报, 2022, 42(2): 338-344.
[6] XIN Yechun, XU Wei, ZHAO Dongyang, ZHANG Bo. Pitting Corrosion Behavior of Ultra-fine Lamellated Al-4%Cu Alloy[J]. 中国腐蚀与防护学报, 2022, 42(2): 274-280.
[7] DAI Weili, WANG Jinghang, LUO Shuai, DU Ning, LIU Fan, XU Lidong, ZHANG Jun, SONG Yuehong, LIU Yanfeng. Fabrication of Super-hydrophobic Surface on AM60 Mg-alloy and Its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2022, 42(2): 301-308.
[8] LI Xujia, HUI Honghai, ZHAO Junwen, WU Guoqiang, DAI Guangze. Effect of MWCNTs Content on Corrosion Resistance of Chromium-free Zinc-aluminum Coatings[J]. 中国腐蚀与防护学报, 2022, 42(2): 324-330.
[9] LIU Yongqiang, LIU Guangming, FAN Wenxue, GAN Hongyu, TANG Rongmao, SHI Chao. Effect of Polyethylene Glycol-600 on Acidic Zn-Ni Alloy Electroplating and Its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2022, 42(2): 235-242.
[10] LIU Haochen, FAN Lin, ZHANG Haibing, WANG Yingying, TANG Junlei, BAI Xuehan, SUN Mingxian. Research Progress of Stress Corrosion Cracking of Ti-alloy in Deep Sea Environments[J]. 中国腐蚀与防护学报, 2022, 42(2): 175-185.
[11] DENG Jiali, YAN Maocheng, GAO Bowen, ZHANG Hui. Corrosion Behavior of Pipeline Steel Under High-speed Railway Dynamic AC Interference[J]. 中国腐蚀与防护学报, 2022, 42(1): 127-134.
[12] ZHANG Chengdong, LIU Bin, SHI Zeyao, LIU Yan, CAO Qingmin, JIAN Donghui. Research Progress in Corrosion Behavior of Nickel Aluminum Bronze Alloys in Seawater[J]. 中国腐蚀与防护学报, 2022, 42(1): 25-33.
[13] ZHU Yanshan, ZHANG Jiming, WU Fengjuan, QU Jinbo. Analysis and Prediction of Nonmetallic Inclusions and Their Effect on Hydrogen Induced Cracking Behavior of X65 Acid-resistant Pipeline Steel[J]. 中国腐蚀与防护学报, 2022, 42(1): 169-174.
[14] SHAO Yinhua, WANG Jinlong, ZHANG Wei, ZHANG Jia, LI Ling, DU Xiran, CHEN Minghui, ZHU Shenglong, WANG Fuhui. High Temperature Oxidation Behavior of a Heat Resistant Magnesium Alloy Mg-14Gd-2.3Zn-Zr[J]. 中国腐蚀与防护学报, 2022, 42(1): 73-78.
[15] CHENG Qidong, WANG Yanhua. Effect of Surface Scratches on Corrosion Behavior of 304 Stainless Steel Beneath Droplets of Solution (0.5 mol/L NaCl+0.25 mol/L MgCl2)[J]. 中国腐蚀与防护学报, 2022, 42(1): 99-105.
No Suggested Reading articles found!