|
|
Microstructure and Corrosion Resistance of Medical Degradable Mg-2Y-1Zn-xZr Alloy |
WANG Zhongqi1,2, XU Chunxiang1( ), YANG Lijing2( ), TIAN Linhai1, HUANG Tao1,2, SHI Yixuan2, YANG Wenfu1 |
1.College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China 2.Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China |
|
|
Abstract The effect of Zr addition of 0%, 0.2%, 0.4% and 0.6% (mass fraction) respectively on the microstructure and corrosion behavior in simulated body fluid of Mg-2Y-1Zn alloys is systematically investigated via XRD, OM, SEM and EDS, as well as hydrogen evolution measurement and electrochemical measurement. The results show that Mg-2Y-1Zn is mainly composed of α-Mg and Mg3Y2Zn3 phases, and the addition of Zr (≤0.4%) does not change the type of the second phase, while Zr can effectively refine the grains, optimize the microstructure, slower the corrosion current density, improve the corrosion resistance of the alloy, and make the alloy tend to uniform corrosion. However, when the addition of Zr is 0.6%, the excess Zr will precipitate to form a Zr rich region, which promotes the occurrence of galvanic corrosion and reduces the corrosion resistance of the alloy. The results of hydrogen evolution measurement show that the Mg-2Y-1Zn-0.4Zr alloy has the best corrosion resistance.
|
Received: 18 January 2021
|
|
Fund: National Natural Science Foundation of China(51574175);National Key Research and Development Project(2019YFE0118600);Ningbo Science and Technology Innovation 2025 Major Project(2019B10104);Natural Science Foundation of Ningbo(2018A610211) |
Corresponding Authors:
XU Chunxiang,YANG Lijing
E-mail: xuchunxiang2020@126.com;yanglj@nimte.ac.cn
|
About author: YANG Lijing, E-mail: yanglj@nimte.ac.cn XU Chunxiang, E-mail: xuchunxiang2020@126.com
|
1 |
Joost W J, Krajewski P E. Towards magnesium alloys for high-volume automotive applications [J]. Scr. Mater., 2017, 128: 107
|
2 |
Khalajabadi S Z, Kadir M R A, Izman S, et al. The effect of MgO on the biodegradation, physical properties and biocompatibility of a Mg/HA/MgO nano composite manufactured by powder metallurgy method [J]. J. Alloy. Compd., 2016, 655: 266
|
3 |
Zheng L, Wang M T, Yu B Y. Research progress of cold spraying coating technology for Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 22
|
|
郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 22
|
4 |
Wang Q, Tan L L, Yang K. Cytocompatibility and hemolysis of AZ31B magnesium alloy with Si-containing coating [J]. J. Mater. Sci. Technol., 2015, 31: 845
|
5 |
Gao B N, Yu Z W, Han Q, et al. Research and application status quo of calcium phosphate coating surface modified magnesium alloy [J]. Chongqing Med., 2021, 50: 2501
|
|
高蓓宁, 喻正文, 韩琪等. 磷酸钙涂层表面改性镁合金的研究应用现状 [J]. 重庆医学, 2021, 50: 2501
|
6 |
Wu G H, Chen Y S, Ding W J. Current research, application and future prospect of magnesium alloys in aerospace industry [J]. Mann. Spaceflight, 2016, 22(3): 281
|
|
吴国华, 陈玉狮, 丁文江. 镁合金在航空航天领域研究应用现状与展望 [J]. 载人航天, 2016, 22(3): 281
|
7 |
Wang Z, Wang X, Tian Y, et al. Degradation and osteogenic induction of a SrHPO4 -coated Mg-Nd-Zn-Zr alloy intramedullary nail in a rat femoral shaft fracture model [J]. Biomaterials, 2020, 247: 1
|
8 |
Istrate B, Munteanu C, Lupescu S, et al. Electrochemical analysis and in vitro assay of Mg-0.5Ca-xY biodegradable alloys [J]. Materials, 2020, 13: 3082
|
9 |
Jin S, Zhang D, Lu X P, et al. Mechanical properties, biodegradability and cytocompatibility of biodegradable Mg-Zn-Zr-Nd/Y alloys [J]. J. Mater. Sci. Technol., 2020, 47: 190
|
10 |
Liu H, Xue F, Bai J, et al. Microstructures and mechanical properties of Mg-2Y-xZn (x=1, 2, 3 at%) alloys [J]. Rare Met. Mater. Eng., 2014, 43: 570
|
11 |
Li Z M, Luo A A, Wang Q G, et al. Effects of grain size and heat treatment on the tensile properties of Mg-3Nd-0.2Zn (wt%) magnesium alloys [J]. Mater. Sci. Eng., 2013, 564A: 450
|
12 |
Sun Y, Zhang W X, Xu C X, et al. Microstructures and biocorrosion properties of biodegradable Mg-Zn-Y-Ca-xZr alloys [J]. Int. J. Mater. Res., 2018, 109: 621
|
13 |
Wang Y F, Zhang Y B, Gao W. Effect of Zr on the microstructures and mechanical properties of as-extruded Mg-2.3Zn-0.18Y-xZr alloys [J]. Int. J. Mod. Phys., 2017, 31B: 16
|
14 |
Zhang M M, Zhou G R, Sun H J, et al. Effects of Ti and Zr elements addition on the microstructure and corrosion resistance of Zn-2.5Al-2Mg alloy [J]. Mater. Res. Express., 2020, 7: 026525
|
15 |
Wu Z L, Zhang S C, Liu S, et al. Grain refinement mechanism of cast Mg-6Zn-xZr Alloy [J]. Spec. Cast. Nonferr. Alloys, 2018, 38: 89
|
16 |
Peng G S, Wang Y, Fan Z Y. Effect of intensive melt shearing and Zr content on grain refinement of Mg-0.5Ca-xZr alloys [J]. Mater. Sci. Forum, 2013, 765: 336
|
17 |
Alabbasi A, Liyanaarachchi S, Kannan M B. Polylactic acid coating on a biodegradable magnesium alloy: An in vitro degradation study by electrochemical impedance spectroscopy [J]. Thin Solid Films, 2012, 520: 6841
|
18 |
Wang B J, Xu D K, Dong J H, et al. Effect of the crystallographic orientation and twinning on the corrosion resistance of an as-extruded Mg-3Al-1Zn (wt.%) bar [J]. Scr. Mater., 2014, 88: 5
|
19 |
Peng D W, Hu M L, Liu H J, et al. Effect of surface pretreatment of 304 stainless steel on properties of deposited CrMoN coating [J]. Mater. Mechan. Eng., 2021, 45(1): 50
|
|
彭定文, 忽梦磊, 刘豪杰等. 304不锈钢表面预处理对沉积CrMoN涂层性能的影响 [J]. 机械工程材料, 2021, 45(1): 50
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|