Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (1): 113-119    DOI: 10.11902/1005.4537.2021.014
Current Issue | Archive | Adv Search |
Microstructure and Corrosion Resistance of Medical Degradable Mg-2Y-1Zn-xZr Alloy
WANG Zhongqi1,2, XU Chunxiang1(), YANG Lijing2(), TIAN Linhai1, HUANG Tao1,2, SHI Yixuan2, YANG Wenfu1
1.College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2.Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
Download:  HTML  PDF(8729KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of Zr addition of 0%, 0.2%, 0.4% and 0.6% (mass fraction) respectively on the microstructure and corrosion behavior in simulated body fluid of Mg-2Y-1Zn alloys is systematically investigated via XRD, OM, SEM and EDS, as well as hydrogen evolution measurement and electrochemical measurement. The results show that Mg-2Y-1Zn is mainly composed of α-Mg and Mg3Y2Zn3 phases, and the addition of Zr (≤0.4%) does not change the type of the second phase, while Zr can effectively refine the grains, optimize the microstructure, slower the corrosion current density, improve the corrosion resistance of the alloy, and make the alloy tend to uniform corrosion. However, when the addition of Zr is 0.6%, the excess Zr will precipitate to form a Zr rich region, which promotes the occurrence of galvanic corrosion and reduces the corrosion resistance of the alloy. The results of hydrogen evolution measurement show that the Mg-2Y-1Zn-0.4Zr alloy has the best corrosion resistance.

Key words:  Zr      grain refining      metallographic structure      electrochemistry      corrosion      Mg-alloy     
Received:  18 January 2021     
ZTFLH:  TG27  
Fund: National Natural Science Foundation of China(51574175);National Key Research and Development Project(2019YFE0118600);Ningbo Science and Technology Innovation 2025 Major Project(2019B10104);Natural Science Foundation of Ningbo(2018A610211)
Corresponding Authors:  XU Chunxiang,YANG Lijing     E-mail:  xuchunxiang2020@126.com;yanglj@nimte.ac.cn
About author:  YANG Lijing, E-mail: yanglj@nimte.ac.cn
XU Chunxiang, E-mail: xuchunxiang2020@126.com

Cite this article: 

WANG Zhongqi, XU Chunxiang, YANG Lijing, TIAN Linhai, HUANG Tao, SHI Yixuan, YANG Wenfu. Microstructure and Corrosion Resistance of Medical Degradable Mg-2Y-1Zn-xZr Alloy. Journal of Chinese Society for Corrosion and protection, 2022, 42(1): 113-119.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.014     OR     https://www.jcscp.org/EN/Y2022/V42/I1/113

AlloyYZnZrMg
Mg-2Y-1Zn2.0511.056---Bal.
Mg-2Y-1Zn-0.2Zr2.2891.1030.211Bal.
Mg-2Y-1Zn-0.4Zr2.1651.2410.385Bal.
Mg-2Y-1Zn-0.6Zr2.0430.9860.613Bal.
Table 1  Compositions of Mg-2Y-1Zn-xZr alloys
Fig1  XRD patterns of Mg-2Y-1Zn-Zr alloys with the different contents of Zr
Fig.2  Metallographic structures of Mg-2Y-1Zn (a), Mg-2Y-0.2Zr (b), Mg-2Y-0.4Zr (c) and Mg-2Y-0.6Zr (d)
Fig.3  Metallographic structures of Mg-2Y-1Zn-0.4Zr (a) and Mg-2Y-1Zn-0.6Zr (b) and corresponding element mappings of Mg (a2, a2), Y (a3, b3), Zn (a4, b4) and Zr (a5, b5)
PointMgZnY
A88.706.664.64
B78.4613.188.36
C94.633.162.21
Table 2  EDS analysis of the points of A, B, C in Fig.3a (mass fraction / %)
Fig.4  Variations of H2 release (a), hydrogen evolution rate (b) and pH value (c) with immersion time
Fig.5  XRD patterns of Mg-2Y-1Zn-xZr alloys after soaking in SBF solution for 10 d
Fig.6  Surface morphologies of Mg-2Y-1Zn (a, e), Mg-2Y-1Zn-0.2Zr (b, f), Mg-2Y-1Zn-0.4Zr (c, g) and Mg-2Y-1Zn-0.6Zr (d, h) before (a~d) and after (g, h) film removal
Fig.7  Polarization curves of Mg-2Y-1Zn-xZr alloys in SBF solution
MaterialEcorrV vs SCECorrosion rate mm·a-1IcorrμA·cm-2
Mg-2Y-1Zn-1.760.71815.86
Mg-2Y-1Zn-0.2Zr-1.760.48710.78
Mg-2Y-1Zn-0.4Zr-1.610.0260.567
Mg-2Y-1Zn-0.6Zr-1.660.1102.43
Table 3  Fitting results of polarization curves of Mg-2Y-1Zn-xZr alloys in SBF solution
Fig.8  Nyquist (a) and Bode (b, c) plots equivalent circuit of Mg-2Y-1Zn-xZr alloys in SBF solution
MaterialRs / Ω·cm2Q1n1Rct / Ω·cm2Q2n2Rf
Mg-2Y-1Zn37.216.49×10-50.80612.01.31×10-41.00436.5
Mg-2Y-1Zn-0.2Zr39.628.31×10-70.85877.61.63×10-41.00503.7
Mg-2Y-1Zn-0.4Zr42.269.66×10-70.831431.22.31×10-50.75564.8
Mg-2Y-1Zn-0.6Zr40.951.24×10-60.811154.42.76×10-40.75525.0
Table 4  Fitting results of each component in the fitting circuit
1 Joost W J, Krajewski P E. Towards magnesium alloys for high-volume automotive applications [J]. Scr. Mater., 2017, 128: 107
2 Khalajabadi S Z, Kadir M R A, Izman S, et al. The effect of MgO on the biodegradation, physical properties and biocompatibility of a Mg/HA/MgO nano composite manufactured by powder metallurgy method [J]. J. Alloy. Compd., 2016, 655: 266
3 Zheng L, Wang M T, Yu B Y. Research progress of cold spraying coating technology for Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 22
郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 22
4 Wang Q, Tan L L, Yang K. Cytocompatibility and hemolysis of AZ31B magnesium alloy with Si-containing coating [J]. J. Mater. Sci. Technol., 2015, 31: 845
5 Gao B N, Yu Z W, Han Q, et al. Research and application status quo of calcium phosphate coating surface modified magnesium alloy [J]. Chongqing Med., 2021, 50: 2501
高蓓宁, 喻正文, 韩琪等. 磷酸钙涂层表面改性镁合金的研究应用现状 [J]. 重庆医学, 2021, 50: 2501
6 Wu G H, Chen Y S, Ding W J. Current research, application and future prospect of magnesium alloys in aerospace industry [J]. Mann. Spaceflight, 2016, 22(3): 281
吴国华, 陈玉狮, 丁文江. 镁合金在航空航天领域研究应用现状与展望 [J]. 载人航天, 2016, 22(3): 281
7 Wang Z, Wang X, Tian Y, et al. Degradation and osteogenic induction of a SrHPO4 -coated Mg-Nd-Zn-Zr alloy intramedullary nail in a rat femoral shaft fracture model [J]. Biomaterials, 2020, 247: 1
8 Istrate B, Munteanu C, Lupescu S, et al. Electrochemical analysis and in vitro assay of Mg-0.5Ca-xY biodegradable alloys [J]. Materials, 2020, 13: 3082
9 Jin S, Zhang D, Lu X P, et al. Mechanical properties, biodegradability and cytocompatibility of biodegradable Mg-Zn-Zr-Nd/Y alloys [J]. J. Mater. Sci. Technol., 2020, 47: 190
10 Liu H, Xue F, Bai J, et al. Microstructures and mechanical properties of Mg-2Y-xZn (x=1, 2, 3 at%) alloys [J]. Rare Met. Mater. Eng., 2014, 43: 570
11 Li Z M, Luo A A, Wang Q G, et al. Effects of grain size and heat treatment on the tensile properties of Mg-3Nd-0.2Zn (wt%) magnesium alloys [J]. Mater. Sci. Eng., 2013, 564A: 450
12 Sun Y, Zhang W X, Xu C X, et al. Microstructures and biocorrosion properties of biodegradable Mg-Zn-Y-Ca-xZr alloys [J]. Int. J. Mater. Res., 2018, 109: 621
13 Wang Y F, Zhang Y B, Gao W. Effect of Zr on the microstructures and mechanical properties of as-extruded Mg-2.3Zn-0.18Y-xZr alloys [J]. Int. J. Mod. Phys., 2017, 31B: 16
14 Zhang M M, Zhou G R, Sun H J, et al. Effects of Ti and Zr elements addition on the microstructure and corrosion resistance of Zn-2.5Al-2Mg alloy [J]. Mater. Res. Express., 2020, 7: 026525
15 Wu Z L, Zhang S C, Liu S, et al. Grain refinement mechanism of cast Mg-6Zn-xZr Alloy [J]. Spec. Cast. Nonferr. Alloys, 2018, 38: 89
16 Peng G S, Wang Y, Fan Z Y. Effect of intensive melt shearing and Zr content on grain refinement of Mg-0.5Ca-xZr alloys [J]. Mater. Sci. Forum, 2013, 765: 336
17 Alabbasi A, Liyanaarachchi S, Kannan M B. Polylactic acid coating on a biodegradable magnesium alloy: An in vitro degradation study by electrochemical impedance spectroscopy [J]. Thin Solid Films, 2012, 520: 6841
18 Wang B J, Xu D K, Dong J H, et al. Effect of the crystallographic orientation and twinning on the corrosion resistance of an as-extruded Mg-3Al-1Zn (wt.%) bar [J]. Scr. Mater., 2014, 88: 5
19 Peng D W, Hu M L, Liu H J, et al. Effect of surface pretreatment of 304 stainless steel on properties of deposited CrMoN coating [J]. Mater. Mechan. Eng., 2021, 45(1): 50
彭定文, 忽梦磊, 刘豪杰等. 304不锈钢表面预处理对沉积CrMoN涂层性能的影响 [J]. 机械工程材料, 2021, 45(1): 50
[1] LIU Jun, GENG Yongjuan, LI Shaochun, XU Ailing, HOU Dongshuai, LIU Ang, LANG Xiulu, CHEN Xu, LIU Guofeng. Protection Efficacy of TEOS/IBTS Coating on Microbial Fouling of Concrete in Marine Tidal Areas[J]. 中国腐蚀与防护学报, 2022, 42(1): 135-142.
[2] ZHANG Jian, HUANG Jin, XU Jiapeng, LUO Guoqiang, SHEN Qiang. Corrosion Behavior of Molybdenum in LiF-LiCl-LiBr-Li Molten Salt at 500 ℃[J]. 中国腐蚀与防护学报, 2022, 42(1): 67-72.
[3] CHEN Zhenning, YONG Xingyue, CHEN Xiaochun. Micro-defects in Micro-arc Oxidation Coatings on Mg-alloys[J]. 中国腐蚀与防护学报, 2022, 42(1): 1-8.
[4] YIN Xubao, LI Yuqiao, GAO Rongjie. Preparation of Superhydrophobic Surface on Copper Substrate and Its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2022, 42(1): 93-98.
[5] LIU Dong, LIU Jing, HUANG Feng, DU Liying, PENG Wenjie. Corrosion Fatigue Crack Growth Prediction Model Based on Stress Ratio and Threshold for Marine Engineering Steel DH36Z35 in Seawater[J]. 中国腐蚀与防护学报, 2022, 42(1): 163-168.
[6] ZHANG Ziyu, WU Xinqiang, HAN En-Hou, KE Wei. A Review on Corrosion Fatigue Crack Growth Behavior of Structural Materials in Nuclear Power Plants[J]. 中国腐蚀与防护学报, 2022, 42(1): 9-15.
[7] CHENG Qidong, WANG Yanhua. Effect of Surface Scratches on Corrosion Behavior of 304 Stainless Steel Beneath Droplets of Solution (0.5 mol/L NaCl+0.25 mol/L MgCl2)[J]. 中国腐蚀与防护学报, 2022, 42(1): 99-105.
[8] ZHANG Wenli, ZHANG Zhenlong, WU Zhaoliang, HAN Sike, CUI Zhongyu. Effect of Temperature on Pitting Corrosion Behavior of 316L Stainless Steel in Oilfield Wastewater[J]. 中国腐蚀与防护学报, 2022, 42(1): 143-148.
[9] WANG Jing, WANG Siyan, ZHANG Chong, WANG Wentao, CAO Xing, FAN Ning, XU Hongyan. Effect of Nitrogen Doping on Corrosion Inhibition Performance of Carbon Nanoparticles[J]. 中国腐蚀与防护学报, 2022, 42(1): 85-92.
[10] LIU Shuhui, LIU Bin, XU Dawei, LIU Yu, CHEN Fanwei, LIU Siqi. Research Progress on Anti-corrosion Coatings of Layered Double Hydroxides[J]. 中国腐蚀与防护学报, 2022, 42(1): 16-24.
[11] DENG Jiali, YAN Maocheng, GAO Bowen, ZHANG Hui. Corrosion Behavior of Pipeline Steel Under High-speed Railway Dynamic AC Interference[J]. 中国腐蚀与防护学报, 2022, 42(1): 127-134.
[12] WANG Yongxiang, HE Bolin, LI Li. Improvement of Corrosion Fatigue Performance of P355NL1 Steel Welded Joint by Ultrasonic Impact[J]. 中国腐蚀与防护学报, 2022, 42(1): 120-126.
[13] DING Cong, ZHANG Jinling, YU Yanchong, LI Yelei, WANG Shebin. Corrosion Kinetics of A572Gr.65 Steel in Different Simulated Soil Solutions[J]. 中国腐蚀与防护学报, 2022, 42(1): 149-155.
[14] ZHANG Chengdong, LIU Bin, SHI Zeyao, LIU Yan, CAO Qingmin, JIAN Donghui. Research Progress in Corrosion Behavior of Nickel Aluminum Bronze Alloys in Seawater[J]. 中国腐蚀与防护学报, 2022, 42(1): 25-33.
[15] YIN Yangyang, LIU Jianfeng, MIAO Keji, WANG Ting, NING Kai, PAN Weiguo, YUAN Binxia, YIN Shibin. Effect of SO42- on Corrosion of Stainless Steel in Solutions Containing Cl-[J]. 中国腐蚀与防护学报, 2022, 42(1): 34-38.
No Suggested Reading articles found!