Please wait a minute...
J Chin Soc Corr Pro  2006, Vol. 26 Issue (6): 325-328     DOI:
Research Report Current Issue | Archive | Adv Search |
A photoelectrochemical study on passive films of stainless steel in simulated cooling water with sulfide
;;
上海电力学院
Download:  PDF(263KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The photoelectrochemical measurement of stainless steel in simulated cooling water shows that, the passive film on the stainless steel exhibits n-type photoresponse, and the peak of absorption happens at 310nm. The passive film on stainless steel starts to generate photocurrent at potential about -0.35V. As the potential rises, the photocurrent increases, and the bandgap energy Eg of the passive film fall. The addition of sulfide in the simulated cooling water can increase the photocurrent, and reduce the Eg values of the passive film on stainless steel. The greater the concentration of the sulfide is, the larger the measured photocurrent and the lower will be the Eg. That is attributable to the fall of the film resistance of the passive film and the decrease of content of chromium oxides in the passive film.
Key words:  stainless steel      simulated cooling water      photoelectrochemical study      sulfide      
Received:  15 February 2006     
ZTFLH:  TG174.4  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

Cite this article: 

. A photoelectrochemical study on passive films of stainless steel in simulated cooling water with sulfide. J Chin Soc Corr Pro, 2006, 26(6): 325-328 .

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2006/V26/I6/325

[1]Stimming U.Photoelectrochemical studies of passive films[J].Elec-trochim.Acta,1986,31(4):415-429
[2]Liu X Y,Zhou G D,Yang M Z.A simple method for monitoring theinhibition of copper corrosion based on photopotential measurements[J].J.Electroanal.Chem.,1993,361:265-267
[3]Cai S M,Jiang D L,Zhang J J,et al.Semiconductive properties andphotoelectrochemistry of iron oxide electrodes-IX.Photoresponsesof sintered Zn-doped oxide electrode[J].Electrochim.Acta,1992,37(3):425-428
[4]Marsh J,Gorse D.A photoelectrochemical and AC impedance studyof anodic titanium oxide films[J].Electrochim.Acta,1998,43(7):659-670
[5]Zhou G D,Shao H,Loo B H.A study of the copper electrode behav-ior in borax buffer solutions containing chloride ions and benzotria-zole-type inhibitors by voltammetry and photocurrent responsemethod[J].J.Electroanal.Chem.,1997,421:129-135
[6]Modestov A D,Zhou G D,Ge H H,et al.A study of copper elec-trode behavior in alkaline solutions containing benzotriazole-typeinhibitors by the photocurrent response method and intensity modu-lated photocurrent spectroscopy[J].J.Electroanal.Chem.,1994,375:293-299
[7]Yang M,Chen L,Cai S.Photoelectrochemical study of pitting oniron in borate buffer solution containing inhibitor[J].Corrosion,1997,53(1):11-15
[8]Ge H H,Zhou G D,Liao Q Q,et al.A study of anti-corrosion be-havior of octadecylamine-treated iron samples[J].Appl.Surf.Sci.,2000,156:39-46
[9]Modestov A D,Zhou G D,Ge H H,et al.A study by voltammetryand the photocurrent response method of copper electrode behaviorin alkaline solutions containing chloride ions[J].J.Electroanal.Chem.,1995,380:63-68
[10]Paola A D,Shukla D,Stimming U.Photoelectrochemical study ofpassive films on stainless steel in neutral solutions[J].Electrochim.Acta,1991,36(2):345-351
[11]Ge H H,Zhou G D,Wu W Q.Passivation model of 316 stainlesssteel in simulated cooling water and the effect of sulfide on the pas-sive film[J].Appl.Surf.Sci.,2003,211(1-4):321-334
[12]Ge H H,Zhou G D,Wu W Q.Passivation model of stainless steelin simulated cooling water[J].J.Chin.Soc.Corros.Prot.,2004,24(2):65-70(葛红花,周国定,吴文权.316不锈钢在模拟冷却水中的钝化模型[J].中国腐蚀与防护学报,2004,24(2):65-70)
[13]Sim es A M P,Ferreira M G S,Rondot B,et al.Study of passivefilms formed on AISI 304 stainless steel by impedance measure-ments and photoelectrochemistry[J].J.Electrochem.Soc.,1990,137(1):82-87
[14]Hakiki N E,Cunha Belo M Da,Sim es A M P,et al.Semiconduct-ing properties of passive films formed on stainless steels-Influenceof the alloying elements[J].J.Electrochem.Soc.,1998,145(11):3821-3829
[15]Sim es A M P,Ferreira M G S,Rondot B,et al.Study of passivefilms formed on AISI 304 stainless steel by impedance measure-ments and photoelectrochemistry[J].J.Electrochem.Soc.,1990,137(1):82-87
[16]Yu J G,Song S Z.Study on localized breakdown of passive films onstainless steels by photoelectrochemical method[J].Corros.Sci.Prot.Technol.,1992,4(4):223-228(虞建国,宋诗哲.光电化学方法研究不锈钢钝化膜的局部破坏[J].腐蚀科学与防护技术,1992,4(4):223-228)
[17]Schmuki P,B hni H,Mansfeld F.A photoelectrochemical investi-gation of passive films formed by alternating voltage passivation[J].J.Electrochem.Soc.,1993,140(7):L119-L123
[18]Yan L C,Zhang J X,Wei Z F,et al.Photoelectrochemical investi-gation of A.V.passive film on 304 stainless steel[J].J.Chin.Soc.Corros.Prot.,2005,25(4):209-212(颜立成,张俊喜,魏增福等.不锈钢载波钝化膜的光电化学研究[J].中国腐蚀与防护学报,2005,25(4):209-212)
[1] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[3] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[4] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[5] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[6] ZHAO Baijie, FAN Yi, LI Zhenzhen, ZHANG Bowei, CHENG Xuequn. Crevice Corrosion Behavior of 316L Stainless Steel Paired with Four Different Materials[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[7] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[8] QIN Yueqiang, ZUO Yong, SHEN Miao. Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[9] HE Zhuang,WANG Xingping,LIU Zihan,SHENG Yaoquan,MI Mengxin,CHEN Lin,ZHANG Yan,LI Yuchun. Passivation and Pitting of 316L and HR-2 Stainless Steel in Hydrochloric Acid Liquid Membrane Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[10] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[11] LUO Hong,GAO Shujun,XIAO Kui,DONG Chaofang,LI Xiaogang. Effect of Magnetron Sputtering Process Parameters on CrN Films on 304 Stainless Steel and TheirCorrosion Behavior[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[12] FU Anqing,ZHAO Mifeng,LI Chengzheng,BAI Yan,ZHU Wenjun,MA Lei,XIONG Maoxian,XIE Junfeng,LEI Xiaowei,LV Naixin. Effect of Laser Surface Melting on Microstructure and Performance of Super 13Cr Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(5): 446-452.
[13] SUN Xiaoguang,HAN Xiaohui,ZHANG Xingshuang,ZHANG Zhiyi,LI Gangqing,DONG Chaofang. Corrosion Resistance and Environmentally-friendly Chemical Passivation of Welded Joints for Ultra-low Carbon Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[14] Yu LI,Lei GUAN,Guan WANG,Bo ZHANG,Wei KE. Influence of Mechanical Stresses on Pitting Corrosion of Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.
[15] Zhaodeng LI,Zhendong CUI,Xiangyu HOU,Lili GAO,Weizhen WANG,Jianhua YIN. Corrosion Property of Nuclear Grade 316LN Stainless Steel Weld Joint in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2019, 39(2): 106-113.
No Suggested Reading articles found!