Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (4): 461-468    DOI: 10.11902/1005.4537.2021.052
Current Issue | Archive | Adv Search |
Influence of Acid Pickling on Morphology, Optical Parameters and Corrosion Resistance of 316L Stainless Steel
YI Guanghui, ZHENG Dajiang, SONG Guangling()
College of Materials, Xiamen University, Xiamen 361005, China
Download:  HTML  PDF(11900KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Acid pickling is an essential procedure in manufacturing stainless steel products. However, inappropriate operation may result in some defects on the product surfaces. To understand the pickling effect, the morphology and corrosion behavior of 316L stainless steel were assessed by means of laser confocal microscopy (LSM), scanning electron microscopy (SEM), atomic force microscope (AFM), potentialdynamic polarization (PP), electrochemical impedance spectroscopy (EIS), Mott-Schottky (MS) and ellipsometry (ES). The results indicated that the corrosion resistance of 316L stainless steel in 3.5%NaCl solution was improved after pickling, but pitting corrosion was found on the surface of 316L stainless steel if the steel was over-pickled. The enhancement of the corrosion resistance could be due to the formation of Cr2O3-riched passivation film on the surface after pickling. The pitting corrosion initiated from the pores in the passive film, which was formed after extended immersion in pickling acid. A pickling solution droplet remaining on the surface led to a thicker passive film formed locally, which had different optical reflection, and was displayed as a macroscopic white spot on the surface.

Key words:  316L stainless steel      acid pickling      white spot      electrochemistry      ellipsometry     
Received:  16 March 2021     
ZTFLH:  TG174  
Corresponding Authors:  SONG Guangling     E-mail:  guangling.song@hotmail.com
About author:  SONG Guangling, E-mail: guangling.song@hotmail.com

Cite this article: 

YI Guanghui, ZHENG Dajiang, SONG Guangling. Influence of Acid Pickling on Morphology, Optical Parameters and Corrosion Resistance of 316L Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2021, 41(4): 461-468.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.052     OR     https://www.jcscp.org/EN/Y2021/V41/I4/461

Fig.1  Local areas after different pickling times on a 316L stainless steel surface
Fig.2  Potentialdynamic polarization curves of 316L stainless steel coupons after different pickling time
Pickling time / minRs (Ω·cm2) / (error%)Y0 (F/s(1-n)) / (error%)n / (error%)Rp (Ω·cm2) / (error%)
051.86 (0.8757%)2.88×10-5 (0.89%)0.8506 (0.25%)2.99×105 (3.01%)
1047.63 (0.57%)9.38×10-6 (0.48 %)0.901 (0.12%)4.49×106 (5.66%)
2051.48 (2.28%)1.41×10-5 (1.90%)0.8585 (0.50%)2.16×106 (35.89%)
3051.98 (0.95%)1.18×10-5 (0.82%)0.9098 (0.21%)8.15×106 (21.28%)
4049.37 (0.59%)1.68×10-5 (0.53%)0.8952 (0.14%)2.62×106 (6.62%)
5051.89 (0.27%)1.52×10-5 (0.21%)0.8101 (0.06%)2.27×107 (24.80%)
Table 2  Fitting parameters of the EIS results of the samples in 3.5%NaCl solution.
Fig.3  Nyquist plot of 316L stainless steel coupons after different pickling time
Pickling time / minIcorr / nA·cm-2Ecorr / Vba / V·dec-1bc / V·dec-1
0131-0.0960.4130.105
1012.80.0400.4160.101
2011.90.0100.4370.104
3014.20.0300.3490.102
40120.0220.4100.100
509.970.0210.4920.093
Table 1  Corrosion parameters of the polarization curves of 316L stainless steel coupons after different pickling time
Fig.4  |Z|-Frequency plot (a) and phase-frequency plot (b) of 316L stainless steel coupons after different pickling time
Fig.5  Optical miscropic surface morphologies of 316L stainless steel coupons after 0 min (a), 10 min (b), 20 min (c), 30 min (d), 40 min (e) and 50 min (f) pickling
Fig.6  Surface roughness of 316L stainless steel coupons after different pickling time
Fig.7  SEM microscopic morphologies of 316L stainless steel coupons after 0 min (a), 10 min (b), 20 min (c), 30 min (d), 40 min (e) and 50 min (f) pickling
Fig.8  AFM microscopic morphologies of 316L stainless steel coupons after 0 min (a), 10 min (b), 20 min (c), 30 min (d), 40 min (e) and 50 min (f) pickling
Fig.9  XPS spectra of 316L stainless steel surface after different pickling time: (a) Fe2p3/2, (b) Cr2p3/2
Pickling time / minFeO (Fe3O4)Cr2O3Cr2O3 / (Cr2O3+FeO (Fe3O4))
09.674.5131.81
105.165.3851.04
207.183.8534.9
308.234.5335.5
408.683.226.94
507.553.8433.71
Table 3  Surface oxide composition of 316L stainless steel coupons after different pickling time (atomic fraction / %)
Fig.10  Passivation film thickness of 316L stainless steel surface after different pickling time
Pickling time / minn / (error%)k / (error%)ε1 / (error%)ε2 / (error%)|ε| (ε12+ε22)
01.54 (0.65%)3.10 (0.47%)-7.23 (0.96%)9.58 (1.05%)12.00
101.80 (0.76%)3.43 (0.15%)-8.56 (0.24%)12.34 (0.91%)15.02
201.96 (0.48%)3.69 (0.23%)-9.81 (0.61%)14.46 (0.60%)17.47
301.98 (0.63%)3.67 (0.11%)-9.50 (0.29%)14.55 (0.73%)17.37
401.93 (0.69%)3.70 (0.14%)-9.97 (0.54%)14.26 (0.75%)17.40
501.94 (0.60%)3.70 (0.15%)-9.95 (0.66%)14.34 (0.59%)17.45
Table 4  Optical and dielectric constants of 316L stainless steel samples after different pickling time: (obtained at wavelength 589 nm)
Fig.11  Mott-Schottky plot of 316L stainless steel coupons with different pickling time
Pickling time / minEfb / V, n-typeEfb / V, p-typeNd / cm-3Na / cm-3
0-0.760.812.38×10171.93×1017
10-0.740.775.40×10174.33×1017
20-0.820.153.17×10183.59×1018
30-0.740.501.27×10181.45×1018
40-0.730.101.31×10181.41×1018
50-0.760.121.13×10181.27×1018
Table 5  Flat-band potential, donor density and acceptor density of 316L stainless steel samples after different pickling time
1 Heilala B, Mäkinen A, Nissinen I, et al. Evaluation of time-gated Raman spectroscopy for the determination of nitric, sulfuric and hydrofluoric acid concentrations in pickle liquor [J]. Microchem. J., 2018, 137: 342
2 Kang G M, Lee K, Park H, et al. Quantitative analysis of mixed hydrofluoric and nitric acids using Raman spectroscopy with partial least squares regression [J]. Talanta, 2010, 81: 1413
3 Ito M, Yoshioka M, Isobe T, et al. Development of automatic analyzer for sulfuric acid, mixed nitric acid, and hydrofluoric acid in stainless pickling process [J]. Kag. Kog. Ronbunshu, 1999, 25: 1
4 Takahari T, Kosaka M, Arigane H. Behavior of ferricfluoride ions in the pickling solution of nitric acid and hydrofluoric acid for stainless steels [J]. Tetsu to Hagane, 1984, 70: 1605
5 Gálvez J L, Dufour J, Negro C, et al. Determination of iron and chromium fluorides solubility for the treatment of wastes from stainless steel mills [J]. Chem. Eng. J., 2008, 136: 116
6 Bystriansky J, Malani'k K, Nova'k P. Stability of minority phases in some corrosion media [J]. Corros. Sci., 1993, 35: 355
7 Li L F, Caenen P, Celis J P. Effect of hydrochloric acid on pickling of hot-rolled 304 stainless steel in iron chloride-based electrolytes [J]. Corros. Sci., 2008, 50: 804
8 Jiang M F, Li X L, Yue Y Y, et al. Effect of hydrochloric acid on electrochemical behaviour of 430 stainless steel [J]. Mater. Res. Innov., 2014, 18: S5-62
9 Yue Y Y, Liu C J, Shi P Y, et al. Corrosion of hot-rolled 430 stainless steel in HCl-based solution [J]. Corros. Eng. Sci. Technol., 2016, 51: 581
10 Erdoğan M, Karakaya E, Aras M S, et al. Removal of trace amounts of copper from concentrated hydrochloric acid solutions [J]. Int. J. Electrochem. Sci., 2018, 13: 10934
11 Li H Y, Zhao A C. Pickling behavior of duplex stainless steel 2205 in hydrochloric acid solution [J]. Adv. Mater. Sci. Eng., 2019, 2019: 1
12 Li L F, Caenen P, Jiang M F. Electrolytic pickling of the oxide layer on hot-rolled 304 stainless steel in sodium sulphate [J]. Corros. Sci., 2008, 50: 2824
13 Yi G H, Zheng D J, Song G L. Surface white spot and pitting corrosion of 316 L stainless steel [J]. Anti-Corros. Methods Mater., 2020, 68: 1
14 Lin J K, Ma G J, Qiao Z, et al. White spot analysis of a nuclear power plant reactor refueling pool stainless steel cladding [J]. Total Corros. Control, 2015, 29(7): 38
林建康, 马谷剑, 乔泽等. 某核电厂反应堆换料水池不锈钢覆面钢板白斑分析[J]. 全面腐蚀控制, 2015, 29(7): 38
15 Narvaez L, Miranda J M, Ronquillo A. Stainless steel pickling using ecologies friendly mixtures composed of H2O2-H2SO4-iones F [J]. Rev. Met., 2013, 49: 145
16 Ghods P, Isgor O B, Brown J R, et al. XPS depth profiling study on the passive oxide film of carbon steel in saturated calcium hydroxide solution and the effect of chloride on the film properties [J]. Appl. Surf. Sci., 2011, 257: 4669
17 Liu J, Zhang T, Meng G Z, et al. Effect of pitting nucleation on critical pitting temperature of 316L stainless steel by nitric acid passivation [J]. Corros. Sci., 2015, 91: 232
18 Hakiki N E, Boudin S, Rondot B, et al. The electronic structure of passive films formed on stainless steels [J]. Corros. Sci., 1995, 37: 1809
[1] RAN Dou, MENG Huimin, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of Temperature on Corrosion Behavior of 14Cr12Ni3-WMoV Stainless Steel in 0.02 mol/L NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(3): 362-368.
[2] WANG Kuntai, CHEN Fu, LI Huan, LUO Mina, HE Jie, LIAO Zihan. Corrosion Behavior of L245 Pipeline Steel in Shale Gas Fracturing Produced Water Containing Iron Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
[3] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[4] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[5] ZHAI Sixin, YANG Xingyun, YANG Jilan, GU Jianfeng. Corrosion Properties of Quenching-Partitioning-Tempering Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.
[6] FU Haibo, LIU Xiaoru, SUN Yuan, CAO Dali. Corrosion Resistance of Epoxy Resin/recrystallized Silicon Carbide Composite[J]. 中国腐蚀与防护学报, 2020, 40(4): 373-380.
[7] SHEN Shuyang, WANG Dongsheng, SUN Shibin, YANG Ti, ZHAO Qianjing, WANG Xin, ZHANG Yafei, CHANG Xueting. Corrosion Behavior in Artificial Seawater of Subzero Treated EH40 Marine Steel Suitable for ExtremelyCold Environments[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[8] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[9] QIN Yueqiang, ZUO Yong, SHEN Miao. Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[10] YU Mei,WEI Xindi,FAN Shiyang,LIU Jianhua,LI Songmei,ZHONG Jinyan. Corrosion Behavior of 2297 Al-Li Alloy under Tensile Load[J]. 中国腐蚀与防护学报, 2019, 39(5): 439-445.
[11] Mingyu BAO, Chengqiang REN, Jingsi HU, Bo LIU, Jiameng LI, Feng WANG, Li LIU, Xiaoyang GUO. Stress Induced Corrosion Electrochemical Behavior of Steels for Oil and Gas Pipes[J]. 中国腐蚀与防护学报, 2017, 37(6): 504-512.
[12] Xiaocheng ZHOU, Qiaoqi CUI, Jinghuan JIA, Zhiyong LIU, Cuiwei DU. Influence of Cl- Concentration on Stress Corrosion Cracking Behavior of 316L Stainless Steel in Alkaline NaCl/Na2S Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[13] Xiuzhou LIN, Li YANG, Yongjun MEI, Xingwen ZHENG, Shuwen LUO, Xuejun CUI. Corrosion Electrochemical Behavior Beneath Thin Electrolyte Layer of Potassium Formate Solution of Cd-plated 4130 Steel Used for Aircraft Landing Gear[J]. 中国腐蚀与防护学报, 2017, 37(6): 567-574.
[14] Fahe CAO, Xiaoyan LIU, Zejie ZHU, Zhenni YE, Pan LIU, Jianqing ZHANG. Mumeric Simulation and Gap Control of Scanning Electrochemical Microscopy and Its Application[J]. 中国腐蚀与防护学报, 2017, 37(5): 395-401.
[15] Yanliang WANG,Xu CHEN,Jidong WANG,Bo SONG,Dongsheng FAN,Chuan HE. Electrochemical Behavior of 316L Stainless Steel in Borate Buffer Solution with Different pH[J]. 中国腐蚀与防护学报, 2017, 37(2): 162-167.
No Suggested Reading articles found!