Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (4): 450-460    DOI: 10.11902/1005.4537.2020.125
Current Issue | Archive | Adv Search |
Corrosion Evolution Characteristics of Q235B Steel in O3/SO2 Composite Atmosphere
CHEN Wenjuan1,2, FANG Lian3, PAN Gang3,4()
1.Engineering Research Center of High Performance Copper Alloy Materials and Processing, Ministry of Education, Hefei University of Technology, Hefei 230601, China
2.Postdoctoral Research Station, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
3.Foundation Department of Xuancheng Campus, Hefei University of Technology, Xuancheng 242000, China
4.Anhui Province Key Laboratory of Industry Safety and Emergency Technology, Hefei University of Technology, Hefei 230601, China
Download:  HTML  PDF(9367KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion evolution characteristics of Q235B steel in O3/SO2 containing composite atmosphere was examined by means of a simulation of dry/wet cyclic corrosion test, electrochemical impedance spectroscopy (EIS) and polarization curves measurements, as well as X-ray diffractometer (XRD) and 3D laser measurement microscope. The results show that the synergistic effect of O3 and SO2 can obviously inhibit the corrosion of Q235B steel. When the concentration of Na2SO3 in the simulated environment is 0.01 mol/L, the corrosion rate of Q235B steel in the simulated O3/SO2 containing composite atmosphere increases rapidly and then decreases slowly. When the concentration of Na2SO3 in the simulated environment is 0.05 mol/L, the corrosion rate of Q235B steel increases slowly and then decreases rapidly. When the concentration of Na2SO3 in the simulated atmosphere is 0.10 mol/L, the corrosion rate of Q235B steel increases first and then decreases slowly. Compared with the atmosphere without O3, when the content of SO2 in the simulated atmosphere is lower, the synergistic effect of O3 and SO2 will promote the formation of α-FeOOH. When the content of SO2 in the atmosphere is higher, the effect of O3 on the phase composition of the corrosion products is not obvious.

Key words:  Q235B steel      O3      atmospheric corrosion      corrosion product     
Received:  17 July 2020     
ZTFLH:  TG172.3  
Fund: Fundamental Research Funds for the Central Universities of China(PA2020GDSK0078);Fundamental Research Funds for the Central Universities(PA2020GDGP0054);Poverty alleviation and Rural Revitalization Strategy Research Project of Hefei University of Technology(JS2020HGXJ0102)
Corresponding Authors:  PAN Gang     E-mail:  dagang@hfut.edu.cn
About author:  PAN Gang, E-mail: dagang@hfut.edu.cn

Cite this article: 

CHEN Wenjuan, FANG Lian, PAN Gang. Corrosion Evolution Characteristics of Q235B Steel in O3/SO2 Composite Atmosphere. Journal of Chinese Society for Corrosion and protection, 2021, 41(4): 450-460.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.125     OR     https://www.jcscp.org/EN/Y2021/V41/I4/450

SampleNa2SO3 / mol·L-1O3 / mg·m-3
#1-10.010
#1-20.0135
#2-10.050
#2-20.0535
#3-10.100
#3-20.1035
Table 1  Na2SO3 concentration and the O3 content for simulating atmospheres
Fig.1  Corrosion mass gain results of Q235B steel with prolonged CCT number in simulated atmospheres: (a) 1# sample, (b) 2# sample, (c) 3# sample
Fig.2  Calculated instantaneous corrosion rate result of low carbon steel with prolonged CCT number in simulated atmospheres: (a) 1# sample, (b) 2# sample, (c) 3# sample
Fig.3  XRD patterns of the powdered rust Q235B steel after 30 CCT in the simulated atmospheres: (a) 1# sample, (b) 2# sample, (c) 3# sample
Fig.4  Polarization curves of rusted Q235B steel samples in simulated atmospheres as a function of the CCT number: (a1, a2) 1# sample, (b1, b2) 2# sample, (c1, c2) 3# sample
Fig.5  Polarization resistance of the Q235B steel in the simulated atmospheres as a function of the CCT number: (a) 1# sample, (b) 2# sample, (c) 3# sample
Fig.6  Imperdace module (a1~f1) and phase angle (a2~f2) plots of the EIS results for the rusted Q235B steel samples as a function of the CCT number in the simulated atmospheres: (a1, a2) #1-1 sample, (b1, b2) #1-2 sample, (c1, c2) #2-1 sample, (d1, d2) #2-2 sample, (e1, e2) #3-1 sample, (f1, f2) #3-2 sample
Fig.7  Equivalent electrical circuit for the EIS of rusted Q235B steel in the simulated atmospheres
Fig.8  Evolution of the parameters of Rr (a1~c1), Rct (a2~c2) and Yw (a3~c3) obtained from the EIS data for Q235B steel samples in the simulated atmospheres as a function of the cyclic number: (a1~a3) 1# sample, (b1~b3) 2# sample, (c1~c3) 3# sample
Fig.9  3D laser micrograph of #1-1 sample (a1~c1), #1-2 sample (a2~c2), #2-1 sample (a3~c3), #2-2 sample (a4~c4), #3-1 sample (a5~c5) and #3-2 sample (a6~c6) Q235B steel surface corroded by 2 CCT (a1~a6), 10 CCT (b1~b6) and 30 CCT (c1~c6) in simulated
Fig.10  Surface roughness of Q235B steel surface corroded with prolonged CCT number in simulated atmosphere: (a) 1# sample, (b) 2# sample, (c) 3# sample
1 Corvo F, Betancourt N, Mendoza A. The influence of airborne salinity on the atmospheric corrosion of steel [J]. Corros. Sci., 1995, 37: 1889
2 Dong J H, Han E-H, Ke W. Introduction to atmospheric corrosion research in China [J]. Sci. Technol. Adv. Mater., 2007, 8: 559
3 Persson D, Thierry D, Karlsson O. Corrosion and corrosion products of hot dipped galvanized steel during long term atmospheric exposure at different sites world-wide [J]. Corros. Sci., 2017, 126: 152
4 Chen W J, Hao L, Dong J H, et al. Effect of SO2 on corrosion evolution of Q235B steel in simulated coastal-industrial atmosphere [J]. Acta Metall. Sin., 2014, 50: 802
陈文娟, 郝龙, 董俊华等. 模拟工业-海岸大气中SO2对Q235B钢腐蚀行为的影响 [J]. 金属学报, 2014, 50: 802
5 Chen W J, Hao L, Dong J H, et al. Effect of sulphur dioxide on the corrosion of a low alloy steel in simulated coastal industrial atmosphere [J]. Corros. Sci., 2014, 83: 155
6 Henriksen J F. The distribution of NaCl on Fe during atmospheric corrosion [J]. Corros. Sci., 1969, 9: 573
7 Graedel T E, Frankenthal R P. Corrosion mechanisms for iron and low alloy steels exposed to the atmosphere [J]. J. Electrochem. Soc., 1990, 137: 2385
8 Songdao Y, translated by Jin Y K. Development and Research of Low Alloy Corrosion Resistant Steel [M]. Beijing: Metallurgical Industry Press, 2004: 235
松岛岩著, 靳裕康译. 低合金耐蚀钢—开发、发展及研究 [M]. 北京: 冶金工业出版社, 2004: 235
9 Ishikawa T, Miyamoto S, Kandori K, et al. Influence of anions on the formation of β-FeOOH rusts [J]. Corros. Sci., 2005, 47: 2510
10 Evans U R, Taylor C A J. Mechanism of atmospheric rusting [J]. Corros. Sci., 1972, 12: 227
11 Evans U R. Electrochemical mechanism of atmospheric rusting [J]. Nature, 1965, 206: 980
12 Leygraf C, Graedel T E. Atmospheric Corrosion [M]. New York: Wiley-Interscience, 2000
13 Allam I M, Arlow J S, Saricimen H. Initial stages of atmospheric corrosion of steel in the Arabian Gulf [J]. Corros. Sci., 1991, 32: 417
14 Asami K, Kikuchi M. In-depth distribution of rusts on a plain carbon steel and weathering steels exposed to coastal-industrial atmosphere for 17 years [J]. Corros. Sci., 2003, 45: 2671
15 Wang S T, Yang S W, Gao K W, et al. Corrosion behavior and corrosion products of a low-alloy weathering steel in Qingdao and Wanning [J]. Int. J. Min. Met. Mater., 2009, 16: 58
16 Guo M X, Pan C, Wang Z Y, et al. A study on the initial corrosion behavior of carbon steel exposed to a simulated coastal-industrial atmosphere [J]. Acta. Metall. Sin., 2018, 54: 65
郭明晓, 潘晨, 王振尧等. 碳钢在模拟海洋工业大气环境中初期腐蚀行为研究 [J]. 金属学报, 2018, 54: 65
17 Ge S J, Wang S J, Xu Q, et al. Ozone impact minimization through coordinated scheduling of turnaround operations from multiple olefin plants in an ozone nonattainment area [J]. Atmos. Environ., 2018, 176: 47
18 Wei W, Lv Z F, Li Y, et al. A WRF-Chem model study of the impact of VOCs emission of a huge petro-chemical industrial zone on the summertime ozone in Beijing, China [J]. Atmos. Environ., 2018, 175: 44
19 Carro-Calvo L, Ordóñez C, García-Herrera R, et al. Spatial clustering and meteorological drivers of summer ozone in Europe [J]. Atmos. Environ., 2017, 167: 496
20 Pendlebury D, Gravel S, Moran M D, et al. Impact of chemical lateral boundary conditions in a regional air quality forecast model on surface ozone predictions during stratospheric intrusions [J]. Atmos. Environ., 2018, 174: 148
21 Jing P, Lu Z F, Steiner A L. The ozone-climate penalty in the Midwestern U.S. [J]. Atmos. Environ., 2017, 170: 130
22 Wiesinger R, Martina I, Kleber C, et al. Influence of relative humidity and ozone on atmospheric silver corrosion [J]. Corros. Sci., 2013, 77: 69
23 Screpanti A, De Marco A. Corrosion on cultural heritage buildings in Italy: a role for ozone? [J]. Environ. Pollut., 2009, 157: 1513
24 Oesch S, Faller M. Environmental effects on materials: The effect of the air pollutants SO2, NO2, NO and O3 on the corrosion of Copper, Zinc and Aluminium. A short literature survey and results of laboratory exposures [J]. Corros. Sci., 1997, 39(9): 1505
25 Chen W J, Chen Y Q, Pan G. Corrosion evolution characteristics of Q235B steel in an O3/Cl- containing atmosphere [J]. Corros. Sci. Prot. Technol., 2019, 31: 8
陈文娟, 陈翌庆, 潘刚. O3/Cl-复合大气环境中Q235B钢的腐蚀演化特性 [J]. 腐蚀科学与防护技术, 2019, 31: 8
26 Aastrup T, Wadsak M, Leygraf C, et al. In situ studies of the initial atmospheric corrosion of copper influence of humidity, sulfur dioxide, ozone, and nitrogen dioxide [J]. J. Electrochem. Soc., 2000, 147: 2543
27 Chen W J, Hao L, Dong J H, et al. Effect of pH value on the corrosion evolution of Q235B steel in simulated coastal-industrial atmospheres [J]. Acta Metall. Sin., 2015, 51: 191
陈文娟, 郝龙, 董俊华等. 模拟工业-海岸大气中pH值对Q235B钢腐蚀行为的影响 [J]. 金属学报, 2015, 51: 191
28 Kawasaki Y, Tomoda Y, Ohtsu M. AE monitoring of corrosion process in cyclic wet-dry test [J]. Constr. Build. Mater., 2010, 24: 2353
29 Thee C, Hao L, Dong J H, et al. Atmospheric corrosion monitoring of a weathering steel under an electrolyte film in cyclic wet-dry condition [J]. Corros. Sci., 2014, 78: 130
30 Stern M, Geary A L. Electrochemical polarization. I. A theoretical analysis of the shape of polarization curves [J]. J. Electrochem. Soc., 1957, 104: 56
31 Mansfeld F. 1988 Whitney Award Lecture: Don't be afraid of electrochemical techniques-but use them with care! [J]. Corrosion, 1988, 44: 856
32 Mansfeld F, Lin S, Chen Y C, et al. Minimization of high-frequency phase shifts in impedance measurements [J]. J. Electrochem. Soc., 1988, 135: 906
[1] ZHANG Yifan, YUAN Xiaoguang, HUANG Hongjun, ZUO Xiaojiao, CHENG Yulin. Corrosion Behavior of Cu-Al Laminated Board in Neutral Salt Fog Environment[J]. 中国腐蚀与防护学报, 2021, 41(2): 241-247.
[2] BAI Haitao, YANG Min, DONG Xiaowei, MA Yun, WANG Rui. Research Progress on CO2 Corrosion Product Scales of Carbon Steels[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[3] WANG Haiwei, CHANG Sen, LUAN Xin'gang, SONG Xuemei, WANG Zhen, LI Yanzhang, CHEN Jianli, ZHANG Jirong, HAN Ming, QIU Dangui. Preparation and Properties of Ceramics Composed of Nano-Al2O3 and Polysiloxane-polyborosilicate-TiB2 Modified Polysilborazane as High Temperature Adhesive for SiC Based Ceramics[J]. 中国腐蚀与防护学报, 2020, 40(4): 367-372.
[4] FAN Yi,CHEN Linheng,CAI Jiaxing,DAi Qinqin,MA Hongchi,CHENG Xuequn. Corrosion Behavior of Hot-rolled AH36 Plate in Indoor Storage Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[5] YANG Yinchu,FU Xiuqing,LIU Lin,MA Wenke,SHEN Moqi. Electrochemical Corrosion of Ni-P-BN(h)-Al2O3 Composite Coating Deposited by Spray Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[6] JIA Yizheng, ZHAO Mingjun, CHENG Shijing, WANG Baojie, WANG Shuo, SHENG Liyuan, XU Daokui. Corrosion Behavior of Mg-Zn-Y-Nd Alloy in Simulated Body Fluid[J]. 中国腐蚀与防护学报, 2019, 39(6): 463-468.
[7] PAN Chengcheng,MA Chao,XIA Dahai. Estimation for Relevance of Atmospheric Corrosion Initiation with Surface Texture of Several Metallic Materials by Electron Backscattering Diffraction[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[8] ZHAO Jinbin,ZHAO Qiyue,CHEN Linheng,HUANG Yunhua,CHENG Xuequn,LI Xiaogang. Effect of Different Surface Treatments on Corrosion Behavior of 300M Steel in Qingdao Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[9] GUO Tieming,ZHANG Yanwen,QIN Junshan,SONG Zhitao,DONG Jianjun. Corrosion Behavior of Q345q Bridge Steel in Three Simulated Atmospheres[J]. 中国腐蚀与防护学报, 2019, 39(4): 319-330.
[10] DENG Junhao,HU Jiezhen,DENG Peichang,WANG Gui,WU Jingquan,WANG Kun. Effect of Oxide Scales on Initial Corrosion Behavior of SPHC Hot Rolled Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[11] Yongwei SUN,Yuping ZHONG,Lingshui WANG,Fangxiong FAN,Yatao CHEN. Corrosion Behavior of Low-alloy High Strength Steels in a Simulated Common SO2-containing Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[12] Duoyun CHENG,Jinbin ZHAO,Bo LIU,Cheng JIANG,Xiaoqian FU,Xuequn CHENG. Corrosion Behavior of High Nickel and Conventional Weathering Steels Exposed to a Harsh Marine Atmospheric Environment at Maldives[J]. 中国腐蚀与防护学报, 2019, 39(1): 29-35.
[13] Tong LIAO,Zheng MA,Leilei LI,Xiumin MA,Xiutong WANG,Baorong HOU. Light-generated Cathodic Protection Properties of Fe2O3/TiO2 Nanocomposites for 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(1): 36-42.
[14] Bobo HUANG,Ping LIU,Xinkuan LIU,Pinxiu MEI,Xiaohong CHEN. Seawater Corrosion Behavior of New 70-1 Tin Brass Net in Waters off Dachen Island for Two Years[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
[15] Li WANG, Chunyun GUO, Kui XIAO, Tuerxun·Silayiding, Chaofang DONG, Xiaogang LI. Corrosion Behavior of Carbon Steels Q235 and Q450 in Dry Hot Atmosphere at Turpan District for Four Years[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
No Suggested Reading articles found!