Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (4): 477-486    DOI: 10.11902/1005.4537.2020.148
Current Issue | Archive | Adv Search |
Pitting Behavior of Fe-based Amorphous Alloy with Sulfide Inclusion
ZHANG Haoran1, WU Hongyan2, WANG Shanlin1(), ZUO Yao1, CHEN Yuhua1, YIN Limeng3
1.Jiangxi Key Laboratory of Forming and Joining Technology for Aviation Components, Nanchang 330063, China
2.Jiujiang Vocational and Technical College, Jiujiang 332007, China
3.School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
Download:  HTML  PDF(15863KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The electrochemical corrosion behavior and corrosion morphology of Fe-based amorphous alloys containing sulfide inclusion were examined by means of electrochemical workstation and transmission electron microscope. The results show that both of the sulfide inclusions Al2S3 and precipitates Al57Mn12 exist in the amorphous alloy. The corrosion rate of the amorphous alloy increases with the increase of the concentration of FeCl2 in the solution. The passivation film in the Cr-depleted zone around the inclusions is weak, which is the location of pitting initiation. Al and Mn of precipitates Al57Mn12 are preferentially dissolved in FeCl2 solution, resulting in pits initiation, however, in the solutions of higher FeCl2 concentration, secondary pores within pits could form due to the presence of autocatalytic effect.

Key words:  Fe-based amorphous alloy      sulfide inclusion      corrosion resistance      pitting     
Received:  12 August 2020     
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(51965044);Project of Chinese Ministry of Armament(41423060313);Graduate Student Innovation Special Fund Project of Jiangxi Province(YC2020-S538)
Corresponding Authors:  WANG Shanlin     E-mail:  slwang70518@nchu.edu.cn
About author:  WANG Shanlin, E-mail: slwang70518@nchu.edu.cn

Cite this article: 

ZHANG Haoran, WU Hongyan, WANG Shanlin, ZUO Yao, CHEN Yuhua, YIN Limeng. Pitting Behavior of Fe-based Amorphous Alloy with Sulfide Inclusion. Journal of Chinese Society for Corrosion and protection, 2021, 41(4): 477-486.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.148     OR     https://www.jcscp.org/EN/Y2021/V41/I4/477

AlloyCSiBPCrMnTiAlNiCaONS
Fe-C4.280.46---0.20---0.200.03---0.09---------0.04
Fe-P0.020.01---26.28---0.690.35------0.01------0.01
Fe-B0.170.6519.750.04---0.21---0.05------0.020.01---
Fe-Cr1.430.33---0.0255.49---------------0.040.01---
Fe-S0.221.13---------------------1.29---49.7
Table 1  Chemical compositions of the used industrial raw materials (mass fraction / %)
Fig.1  XRD pattern (a) and DSC curve (b) of the Fe-based amorphous casting rod
Fig.2  SEM morphology of the cross sections (a), TEM morphology of the inclusion area and the electron diffraction pattern of the matrix in the area A, EDS analysis result (c) and calibration of electron diffraction pattern of the inclusion in the area B (d) of the Fe-based amorphous alloy
Fig.3  Potentiodynamic (a) and patentiostatic (b) polarization curves of the Fe-based amorphous alloy in FeCl2 solution with different concentrations
Electrolyte / mol·L-1Ecorr / mVIcorr / μA·cm-2Ipass / μA·cm-2Epassive / mVEpitting / mV
0.5-72846.7713.1816601250
1-73915.22144.541370980
2-70552.48245.47990680
4-676316.22398.1078080
Table 2  Electrochemical polarization experimental parameters of the Fe-based amorphous alloy in FeCl2 solution with different concentrations
Fig.4  Corrosion rates of the Fe-based amorphous alloy in FeCl2 solution with different concentrations
Fig.5  Corrosion morphologies of the Fe-based amorphous alloy after immersion for 0 d (a, e, i, m), 3 d (b, f, j, n), 9 d (c, g, k, o) and 15 d (d, h, l, p) in FeCl2 solutions with 0.5 mol/L (a~d), 1 mol/L (e~h), 2 mol/L (i~l) and 4 mol/L (m~p)
Fig.6  TEM morphologies of the inclusion area before the immersion (a), TEM morphologies of the inclusion area and the calibration of electron diffraction pattern of the inclusion in the area B after the immersion (b), line scan analysis result of the inclusion in the direction A (c) and EDS analysis result of the inclusion in the area B (d) of the Fe-based amorphous alloy after the immersion in 4 mol/L FeCl2 solution for 1 h
Fig.7  SEM morphologies of the electrode surface after polarization experiment in 0.5 mol/L (a), 4 mol/L (b), FeCl2 solution, and of the pitting pits after polarization experiment in 0.5 mol/L (c), 1 mol/L (d), 2 mol/L (e), 4 mol/L (f) FeCl2 solution
Fig.8  Schematic diagrams of pitting initiation and development of Fe-based amorphous containing sulfide inclusions in FeCl2 solution: (a) before the immersion, (b) beginning of the passive film dissolution, (c) dissolution of the inclusions, (d) appearance of the pitting pits
1 Chen H S, Formation Turnbull D., stability and structure of palladium-silicon based alloy glasses [J]. Acta Metall., 1969, 17: 1021
2 Wang Y H, Yang Y S. Amorphous Alloys [M]. Beijing: Metallurgical Press, 1989: 135
王一禾, 杨膺善. 非晶态合金 [M]. 北京: 冶金工业出版社, 1989: 135
3 Wang G, Xiao P, Huang Z J, et al. Microstructure and wear properties of Fe-based amorphous coatings deposited by high-velocity oxygen fuel spraying [J]. J. Iron Steel Res. Int., 2016, 23: 699
4 Li D Y, Chen X Y, Hui X D, et al. Effect of amorphicity of HVOF sprayed Fe-based coatings on their corrosion performances and contacting osteoblast behavior [J]. Surf. Coat. Technol., 2017, 310: 207
5 Wang W, Zhang C, Xu P, et al. Enhancement of oxidation and wear resistance of Fe-based amorphous coatings by surface modification of feedstock powders [J]. Mater. Des., 2015, 73: 35
6 Wang L Q, Zhai S Q, Ding R, et al. Recent development of bulk amorphous alloys [J]. Found. Technol., 2017, 38: 274
王立强, 翟慎秋, 丁锐等. 大块非晶合金研究进展 [J]. 铸造技术, 2017, 38: 274
7 Huang Y. Corrosion resistance and pitting initiation mechanism of Fe-based bulk metallic glass with sulfide inclusions [D]. Nanchang: Nanchang Hangkong University, 2017
黄勇. 含硫化物夹杂铁基块体非晶合金耐蚀性能及点蚀萌生机理 [D]. 南昌: 南昌航空大学, 2017
8 Chen Q J, Jiang W, Gao J W. Effect of relative density difference between coating and bulk on Fe-based amorphous alloys corrosion resistance [J]. Chin. J. Nonferrous Met., 2015, 25: 2414
陈庆军, 蒋薇, 高霁雯. 涂层与块体致密度差值对铁基非晶合金耐蚀性的影响 [J]. 中国有色金属学报, 2015, 25: 2414
9 Wang A D, Zhao C L, Men H, et al. Fe-based amorphous alloys for wide ribbon production with high Bs and outstanding amorphous forming ability [J]. J. Alloy. Compd., 2015, 630: 209
10 Wang S L, Cheng J C, Li C X, et al. Precipitation of sulfide particle in situ formed in Fe-based bulk metallic glass [J]. Foundry, 2013, 62: 491
王善林, 成京昌, 李承勋等. 大块铁基非晶中硫化物析出行为研究 [J]. 铸造, 2013, 62: 491
11 Gong Y B. Fabrication, anti-corrosion and wear-resistance properties of Fe-based amorphous coatings by HVOF [D]. Nanchang: Nanchang Hangkong University, 2017
龚玉兵. 铁基非晶涂层HVOF制备及耐蚀耐磨性能研究 [D]. 南昌: 南昌航空大学, 2017
12 Li X, Qin C L, Kato H, et al. Mo microalloying effect on the glass-forming ability, magnetic, mechanical and corrosion properties of (Fe0.76Si0.096B0.084P0.06)100-xMox bulk glassy alloys [J]. J. Alloy. Compd., 2011, 509: 7688
13 Lu Z P, Liu C T, Thompson J R, et al. Structural amorphous steels [J]. Phys. Rev. Lett., 2004, 92: 245503
14 Li H X, Lu Z P, Yi S. Estimation of the glass forming ability of the Fe-based bulk metallic glass Fe68.8C7.0Si3.5B5.0P9.6Cr2.1Mo2.0Al2.0 that contains non-metallic inclusions [J]. Met. Mater. Int., 2009, 15: 7
15 Li H X, Gao J E, Jiao Z B, et al. Glass-forming ability enhanced by proper additions of oxygen in a Fe-based bulk metallic glass [J]. Appl. Phys. Lett., 2009, 95: 161905
16 Li L, Luo X B, Chai F, et al. Effect of sulfur on pitting corrosion behavior of hull steel [J] Contin. Cast., 2017, 42(2): 7
李丽, 罗小兵, 柴锋等. 硫质量分数对船体钢诱发点蚀行为的影响研究 [J]. 连铸, 2017, 42(2): 7
17 Wang Y, Zheng Y G, Wang J Q, et al. Passivation behavior of Fe-based amorphous metallic coating in NaCl and H2SO4 solutions [J]. Acta Metall. Sin., 2015, 51: 49
王勇, 郑玉贵, 王建强等. 铁基非晶涂层在NaCl和H2SO4溶液中的钝化行为 [J]. 金属学报, 2015, 51: 49
18 Wang L, Chao Y S. Corrosion behaviors of bulk amorphous Fe41Co7Cr15Mo14C15B6Y2 alloy in NaOH solution [J]. J. Funct. Mater., 2010, 41: 1849
王莉, 晁月盛. 铁基块体非晶合金在NaOH溶液中的腐蚀行为 [J]. 功能材料, 2010, 41: 1849
19 Guo S F, Pan F S, Zhang H J, et al. Fe-based amorphous coating for corrosion protection of magnesium alloy [J]. Mater. Des., 2016, 108: 624
20 Guo S F, Lai L M, Ding K L, et al. Construction and corrosion behaviour of amorphous coating on magnesium alloy [J]. Surf. Technol., 2019, 48(3): 40
郭胜锋, 赖利民, 丁凯露等. 镁合金表面非晶涂层的构筑及其腐蚀行为 [J]. 表面技术, 2019, 48(3): 40
21 Zhang S D, Zhang W L, Wang S G, et al. Characterisation of three-dimensional porosity in an Fe-based amorphous coating and its correlation with corrosion behaviour [J]. Corros. Sci., 2015, 93: 211
22 Botta W J, Berger J E, Kiminami C S, et al. Corrosion resistance of Fe-based amorphous alloys [J]. J. Alloy. Compd., 2014, 586: S105
23 Wang Y, Luo Q, Qiao J, et al. The corrosion behavior of Fe-based amorphous alloy coating in sodium chloride solution [J]. Metall. Funct. Mater., 2015, 22(1): 1
王允, 罗强, 焦津等. 铁基非晶合金涂层在氯化钠溶液中的腐蚀行为研究 [J]. 金属功能材料, 2015, 22(1): 1
24 Liu G, An Y L, Guo Z H, et al. Structure and corrosion behavior of iron-based metallic glass coatings prepared by LPPS [J]. Appl. Surf. Sci., 2012, 258: 5380
25 Naka M, Hashimoto K, Masumoto T. Corrosion resistivity of amorphous iron alloys containing chromium [J]. J. Japan Inst. Met., 2004, 38: 835
26 Zhang C, Chan K C, Wu Y, et al. Pitting initiation in Fe-based amorphous coatings [J]. Acta Mater., 2012, 60: 4152
27 Meng Q G, Li J G, Tan N. Effect of PH on corrosion behaviors of Pr60Fe30Al10 BMG and ITS crystalline couterpart in NaCl solution [J]. Rare Met. Mater. Eng., 2007, 36: 71
孟庆格, 李建国, 谭宁. pH值对块体非晶Pr60Fe30Al10在NaCl溶液中的腐蚀行为影响 [J]. 稀有金属材料与工程, 2007, 36: 71
28 Li Z, Zhang C, Liu L. Wear behavior and corrosion properties of Fe-based thin film metallic glasses [J]. J. Alloy. Compd., 2015, 650: 127
29 Qin H P, Chen H T, Lang Y P, et al. Mechanism of induced pitting corrosion in 439M ferritic stainless steel [J]. Iron Steel, 2015, 50(9): 81
覃怀鹏, 陈海涛, 郎宇平等. 439M铁素体不锈钢点蚀诱发机理 [J]. 钢铁, 2015, 50(9): 81
30 Zhang C Y, Zhang Q, Li J G, et al. Micro-corrosion test research on pitting initiation site of the inclusions of carbon steel and low alloy steel in chlorine ion solution [J]. Metall. Anal., 2014, 34(1): 22
张春亚, 张奇, 李继高等. 碳钢及低合金钢在氯离子溶液中夹杂物诱发点蚀位置显微腐蚀实验探讨 [J]. 冶金分析, 2014, 34(1): 22
31 Wang Y, Li M Y, Zhu F, et al. Pitting corrosion mechanism of Cl- and S2- induced by oxide inclusions in Fe-based amorphous metallic coatings [J]. Surf. Coat. Technol., 2020, 385: 125449
32 Rossi A, Elsener B, Hähner G, et al. XPS, AES and ToF-SIMS investigation of surface films and the role of inclusions on pitting corrosion in austenitic stainless steels [J]. Surf. Interface Anal., 2000, 29: 460
33 Wu H B, Wang D, Liang J M, et al. Influence of inclusion on pitting corrosion behavior of low-alloy steel for bottom plates of cargo oil tanks [J]. Trans. Mater. Heat Treat., 2014, 35(12): 172
武会宾, 王迪, 梁金明等. 夹杂物对低合金钢在酸性Cl-溶液环境中点蚀行为的影响 [J]. 材料热处理学报, 2014, 35(12): 172
34 Barin I. Thermochemical Data of Pure Substances [M]. Beijing: Science Press, 2003: 1055
Barin I. 纯物质热化学数据手册 [M]. 北京: 科学出版社, 2003: 1055
35 Zhao D G, Guo P M, Zhao P. Estimating model of standard enthalpy of intermetallics [J]. J. Central South Univ. (Sci. Technol.), 2011, 42: 1578
赵定国, 郭培民, 赵沛. 金属间化合物的标准生成焓估算模型 [J]. 中南大学学报 (自然科学版), 2011, 42: 1578
36 Hu Z L. The formation and mechanical properties of icosahedral quasicrystal in rapidly solidified Al-Mn-(Be) alloy [D]. Harbin: Harbin Institute of Technology, 2013
胡仲略. 快速凝固Al-Mn- (Be) 合金准晶形成及力学性能 [D]. 哈尔滨: 哈尔滨工业大学, 2013
37 Burstein G T, Liu C, Souto R M, et al. Origins of pitting corrosion [J]. Corros. Eng. Sci. Technol., 2004, 39: 25
38 Zhang S D, Wang Z M, Chang X C, et al. Identifying the role of nanoscale heterogeneities in pitting behaviour of Al-based metallic glass [J]. Corros. Sci., 2011, 53: 3007
39 Zhao Y, Zhou E Z, Liu Y Z, et al. Comparison of different electrochemical techniques for continuous monitoring of the microbiologically influenced corrosion of 2205 duplex stainless steel by marine Pseudomonas aeruginosa biofilm [J]. Corros. Sci., 2017, 126: 142
40 Jiang N. Beam damage by the induced electric field in transmission electron microscopy [J]. Micron, 2016, 83: 79
41 Zhang H R, Egerton R, Malac M. Electron irradiation damage and color centers of MgO nanocube [J]. Nucl. Instrum. Methods Phys. Res., 2013, 316B: 137
42 Li H X, Xu F G, Wang S L, et al. Effect of molybdenum on electrochemical properties of bulk metallic glass Fe71.2-xC7.0Si3.3B5.5P8.7Cr2.3Al2.0Mox [J]. Foundry, 2010, 59: 145
李宏祥, 许凤光, 王善林等. Mo对铁基块体非晶合金Fe71.2-xC7.0Si3.3B5.5P8.7Cr2.3Al2.0Mox腐蚀性能的影响 [J]. 铸造, 2010, 59: 145
43 Guo S F, Chan K C, Xie S H, et al. Novel centimeter-sized Fe-based bulk metallic glass with high corrosion resistance in simulated acid rain and seawater [J]. J. Non-Cryst. Solids, 2013, 369: 29
44 Cao C N. Principles of Electrochemistry of Corrosion [M]. 3rd Ed. Beijing: Chemical Industry Press, 2008: 165
曹楚南. 腐蚀电化学原理 [M]. 第3版. 北京: 化学工业出版社, 2008: 165
45 Li Y, Lin H C, Cao C N. Corrosion interface morphology and fractal analysis of amorphous alloys in air [J]. J. Chin. Soc. Corros. Prot., 1998, 18: 257
李瑛, 林海潮, 曹楚南. 自然大气中非晶合金腐蚀界面的微观形貌特征与分维数分析 [J]. 中国腐蚀与防护学报, 1998, 18: 257
46 Ernst P, Laycock N J, Moayed M H, et al. The mechanism of lacy cover formation in pitting [J]. Corros. Sci., 1997, 39: 1133
47 Wang Y, Jiang S L, Zheng Y G, et al. Effect of processing parameters on the microstructures and corrosion behaviour of high-velocity oxy-fuel (HVOF) sprayed Fe-based amorphous metallic coatings [J]. Mater. Corros., 2013, 64: 801
48 Zhou Z, Wang L, He D Y, et al. Microstructure and wear resistance of Fe-based amorphous metallic coatings prepared by HVOF thermal spraying [J]. J. Therm. Spray Technol., 2010, 19: 1287
[1] CUI Haoran, LIANG Ping, SHI Yanhua, YANG Zhongkui, HAN Li. Effect of Denitration Agent Concentration on Corrosion Resistance and Critical Pitting Temperature of S2205 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(4): 529-534.
[2] YANG Zhongkui, SHI Yanhua, QIAO Zhongli, LIANG Ping, WANG Ling. Effect of ClO2- on Pitting Initiation of S2205 Stainless Steel in Cl- Containing Medium[J]. 中国腐蚀与防护学报, 2021, 41(4): 523-528.
[3] WANG Xiaoge, GAO Kewei, YAN Luchun, YANG Huisheng, PANG Xiaolu. Effect of Ce on Corrosion Resistance of Films of ZnAlCe-layered Double Hydroxides on Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(3): 335-340.
[4] WANG Dongliang, DING Huaping, MA Yunfei, GONG Pan, WANG Xinyun. Research Progress on Corrosion Resistance of Metallic Glasses[J]. 中国腐蚀与防护学报, 2021, 41(3): 277-288.
[5] ZHAN Dongdong, WANG Cheng, QIAN Jiyu, WANG Wen, ZHOU Tong, ZHU Shenglong, WANG Fuhui. Effect of Trace Cl- and Cu2+ Ions on Corrosion Behavior of 3A21 Al-alloy in Ethylene Glycol Coolant[J]. 中国腐蚀与防护学报, 2021, 41(3): 383-388.
[6] LIU Xinyi, ZHAO Yazhou, ZHANG Huan, CHEN Li. Effect of Chloride Concentration in a Simulated Concrete Pore Solution on Metastable Pitting of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
[7] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[8] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[9] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[10] BAO Ren, ZHOU Genshu, LI Hongwei. Preparation of High-tin Bronze Corrosion-resistant Coating by Potentiostatic Pulse Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[11] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[12] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[13] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[14] LIU Haixia, HUANG Feng, YUAN Wei, HU Qian, LIU Jing. Corrosion Behavior of 690 MPa Grade High Strength Bainite Steel in a Simulated Rural Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[15] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
No Suggested Reading articles found!