Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (1): 13-21    DOI: 10.11902/1005.4537.2020.034
Current Issue | Archive | Adv Search |
Research Progress on Mildew Induced Corrosion of Al-alloy
ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei(), LI Weihua
Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
Download:  HTML  PDF(5589KB) 
Export:  BibTeX | EndNote (RIS)      

Recent years, the corrosion of Al-alloy turned to be a serious issue, which directly influence the safe operation of engineering facilities made of Al-alloy. Based on the recent research results related to the mildew induced corrosion of Al-alloy, the representative species of mildew as well as the main factors close to the mildew activity were illustrated. Meanwhile, the relevant corrosion mechanisms were emphatically discussed, including acid corrosion, oxygen concentration cell, the possible direct electron transfer as well as the direct interfacial interaction between Al-alloy and mildew. Mildew can produce large amount of organic acids through metabolism, causing the decline of the pH values in test solution and biofilm, then leading to localized corrosion. As analyzed, the potential direct electron transfer and interfacial interaction between Al-alloy and mildew can be one of important causes, leading to the localized corrosion. Furthermore, the common control methods for mildew induced corrosion of Al-alloy were also reviewed. Finally, the future research focus of Al-alloy corrosion in the presence of mildew was also prospected.

Key words:  Al-alloy      mildew      acid corrosion      microbiologically influenced corrosion     
Received:  05 January 2020     
ZTFLH:  O646  
Fund: National Natural Science Foundation of China(51901253);Natural Science Foundation of;Guangdong Province(2019A1515011135);Fundamental Research Funds for the Central Universities(19lgzd18);Open Project Program of Beijing Key Laboratory of PipelineCritical Technology and Equipment for Deepwater Oil & Gas Development(BIPT201904)
Corresponding Authors:  LIU Hongwei     E-mail:

Cite this article: 

ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy. Journal of Chinese Society for Corrosion and protection, 2021, 41(1): 13-21.

URL:     OR

Fig.1  Macroscopic (a) and microscopic (b) structures of Aspergillus aspergillus colony and microscopic image of spores (c)[18]
SpecyLowest growth temperature / ℃Optimum growth temperature / ℃Highest growth temperature / ℃
Aspergillus flavus530~4243
Aspergillus niger535~4452
Fusarium oxysporum220~7045
Table 1  Temperature range for the growth of representative mildew
Fig.2  Morphology of mildew biofilm on the aluminum alloy surface (a) and the corrosion morphology of aluminum alloy (b) and the corresponding depth change of corrosion pit (c) after 18 d of test in the 3.5%NaCl solution[29]
Fig.3  Localized corrosion mechanism of 6061 aluminum alloy corrosion induced by mildew in the presence of oxygen[31]
Fig.4  Schematic diagram of Al alloy pitting corrosion[35]
1 Reboul M C, Baroux B. Metallurgical aspects of corrosion resistance of aluminium alloys [J]. Mater. Corros., 2011, 62: 215
2 Arrabal R, Mingo B, Pardo A, et al. Pitting corrosion of rheocast A356 aluminium alloy in 3.5wt.%NaCl solution [J]. Corros. Sci., 2013, 73: 342
3 Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys [J]. Mater. Des., 2014, 56: 862
4 Ma T, Wang Z Y, Han W. A review of atmospheric corrosion of aluminum and aluminum alloys [J]. Corros. Sci. Prot. Technol., 2004, 16: 155
马腾, 王振尧, 韩薇. 铝和铝合金的大气腐蚀 [J]. 腐蚀科学与防护技术, 2004, 16: 155
5 Venugopal A, Panda R, Manwatkar S, et al. Effect of micro arc oxidation treatment on localized corrosion behaviour of AA7075 aluminum alloy in 3.5%NaCl solution [J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 700
6 Jia R, Tan J L, Jin P, et al. Effects of biogenic H2S on the microbiologically influenced corrosion of C1018 carbon steel by sulfate reducing Desulfovibrio vulgaris biofilm [J]. Corros. Sci., 2018, 130: 1
7 Li Y C, Xu D K, Chen C F, et al. Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: a review [J]. J. Mater. Sci. Technol., 2018, 34: 1713
8 Liu T, Pan S, Wang Y N, et al. Pseudoalteromonas lipolytica accelerated corrosion of low alloy steel by the endogenous electron mediator pyomelanin [J]. Corros. Sci., 2020, 162: 108215
9 Jia R, Unsal T, Xu D K, et al. Microbiologically influenced corrosion and current mitigation strategies: A state of the art review [J]. Int. Biodeter. Biodegr., 2019, 137: 42
10 Liu H W, Gu T Y, Zhang G A, et al. Corrosion of X80 pipeline steel under sulfate-reducing bacterium biofilms in simulated CO2-saturated oilfield produced water with carbon source starvation [J]. Corros. Sci., 2018, 136: 47
11 Emerson D. The role of iron-oxidizing bacteria in biocorrosion: A review [J]. Biofouling, 2018, 34: 989
12 Liu T, Wang Y N, Pan S, et al. The addition of copper accelerates the corrosion of steel via impeding biomineralized film formation of Bacillus subtilis in seawater [J]. Corros. Sci., 2019, 149: 153
13 Wang X H, Wang L. A study of measures and test technology for fungus resistance to weaponry [J]. Aeronaut. Stand. Qual., 2003, (2): 38
王晓慧, 王丽. 武器装备防霉措施和试验技术探讨 [J]. 航空标准化与质量, 2003, (2): 38
14 Qu X Y, Deng L. Analysis of the environmental worthiness of shipborne weapons in marine environment [J]. Ship Electron. Eng., 2011, 31(4): 138
曲晓燕, 邓力. 舰载武器海洋环境适应性分析 [J]. 舰船电子工程, 2011, 31(4): 138
15 McNamara C J, Perry IV T D, Leard R, et al. Corrosion of aluminum alloy 2024 by microorganisms isolated from aircraft fuel tanks [J]. Biofouling, 2005, 21: 257
16 Hagenauer A, Hilpert R, Hack T. Microbiological investigations of corrosion damages in aircraft [J]. Mater. Corros., 1994, 45: 355
17 Li X, Wang X H. Overview of three-proof design on carrier-based aircraft [J]. Equip. Environ. Eng., 2006, 3(4): 12
李星, 王晓慧. 舰载机三防设计技术研究综述 [J]. 装备环境工程, 2006, 3(4): 12
18 Cheng P, Song W, Chen L, et al. Molecular characterization of Aspergillus tubingensis and Eurotium amstelodami associated with black brick tea [J]. Int. J. Agric. Biol., 2016, 18: 489
19 Zhang J T, Wu L Y. Mildew protection design of airborne equipments [J]. Equip. Environ. Eng., 2007, 4(6): 70
张江涛, 吴龙益. 机载设备霉菌防护设计 [J]. 装备环境工程, 2007, 4(6): 70
20 Ayerst G. The effects of moisture and temperature on growth and spore germination in some fungi [J]. J. Stored Prod. Res., 1969, 5: 127
21 Martin-Sanchez P M, Gorbushina A A, Kunte H J, et al. A novel qPCR protocol for the specific detection and quantification of the fuel-deteriorating fungus Hormoconis resinae [J]. Biofouling, 2016, 32: 635
22 Zhu W F, Li K, Wang B, et al. Practical fungus-proof technology and experiment research of carrier-based aircraft hydraulic system [J]. Hydraul. Pneumat. Seals, 2014, 34(1): 71
朱武峰, 李昆, 王兵等. 舰载机液压系统实用防霉技术及试验研究 [J]. 液压气动与密封, 2014, 34(1): 71
23 Qu Q, Wang L, Li L, et al. Effect of the fungus, Aspergillus niger, on the corrosion behaviour of AZ31B magnesium alloy in artificial seawater [J]. Corros. Sci., 2015, 98: 249
24 Zhou W, Zhang Z G. Analysis on corrosion effect of mold pollution on aviation aluminum alloy equipment [J]. Environ. Sci. Manage., 2019, 44(1): 87
周伟, 张作刚. 霉菌污染对航空铝合金设备腐蚀作用分析研究 [J]. 环境科学与管理, 2019, 44(1): 87
25 Miečinskas P, Leinartas K, Uksienė V, et al. QCM study of microbiological activity during long-term exposure to atmosphere—aluminium colonisation by Aspergillus Niger [J]. J. Solid State Electrochem., 2007, 11: 909
26 Corvo F, Jirón-Lazos U, de la Rosa S, et al. Aluminum and anodized aluminum biocorrosion caused by Aspergillus niger [R]. Mexico, 2016: 9964
27 De Leo F, Campanella G, Proverbio E, et al. Laboratory tests of fungal biocorrosion of unbonded lubricated post-tensioned tendons [J]. Constr. Build. Mater., 2013, 49: 821
28 Akpan G U, Iliyasu M. Fungal populations inhabiting biofilms of corroded oil pipelines in the Niger Delta region of Nigeria [J]. Sky J. Microbiol. Res., 2015, 3: 36
29 Wang J L, Xiong F P, Liu H W, et al. Study of the corrosion behavior of Aspergillus niger on 7075-T6 aluminum alloy in a high salinity environment [J]. Bioelectrochemistry, 2019, 129: 10
30 Dai X Y, Wang H, Ju L K, et al. Corrosion of aluminum alloy 2024 caused by Aspergillus niger [J]. Int. Biodeter. Biodegr., 2016, 115: 1
31 Jirón-Lazos U, Corvo F, De la Rosa S C, et al. Localized corrosion of aluminum alloy 6061 in the presence of Aspergillus niger [J]. Int. Biodeter. Biodegr., 2018, 133: 17
32 Dong Z H, Shi W, Ruan H M, et al. Heterogeneous corrosion of mild steel under SRB-biofilm characterised by electrochemical mapping technique [J]. Corros. Sci., 2011, 53: 2978
33 Machuca L L, Bailey S I, Gubner R, et al. Effect of oxygen and biofilms on crevice corrosion of UNS S31803 and UNS N08825 in natural seawater [J]. Corros. Sci., 2013, 67: 242
34 Heyer A, D'Souza F, Morales C F L, et al. Ship ballast tanks a review from microbial corrosion and electrochemical point of view [J]. Ocean Eng., 2013, 70: 188
35 Liu S Y. Preparation of multifunctional anti-corrosion polyaniline composite coating on Al alloy under marine environment [D]. Hefei: University of Science and Technology of China, 2019
刘素云. 海洋环境用Al合金表面多功能耐蚀聚苯胺复合涂层的研制 [D]. 合肥: 中国科学技术大学, 2019
36 Liu H W, Xu D K, Wu Y N, et al. Research progress in corrosion of steels induced by sulfate reducing bacteria [J]. Corros. Sci. Prot. Technol., 2015, 27: 409
刘宏伟, 徐大可, 吴亚楠等. 微生物生物膜下的钢铁材料腐蚀研究进展 [J]. 腐蚀科学与防护技术, 2015, 27: 409
37 Qu Q, Li S L, Li L, et al. Adsorption and corrosion behaviour of Trichoderma harzianum for AZ31B magnesium alloy in artificial seawater [J]. Corros. Sci., 2017, 118: 12
38 Imo E O, Orji J C, Nweke C O. Influence of Aspergillus fumigatus on corrosion behaviour of mild steel and aluminium [J]. Int. J. Appl. Microbiol. Biotechnol. Res., 2018, 6: 61
39 Silva A M A, Santiago T M, Alves C R, et al. An evaluation of the corrosion behavior of aluminum surfaces in presence of fungi using atomic force microscopy and other tests [J]. Anti-Corros. Methods Mater., 2007, 54: 289
40 Rosales B M, Iannuzzi M. Aluminium AA2024 T351 aeronautical alloy: Part 1. Microbial influenced corrosion analysis [J]. Mater. Sci. Eng., 2008, A472: 15
41 Dou W W, Liu J L, Cai W Z, et al. Electrochemical investigation of increased carbon steel corrosion via extracellular electron transfer by a sulfate reducing bacterium under carbon source starvation [J]. Corros. Sci., 2019, 150: 258
42 Liu H W, Gu T Y, Lv Y L, et al. Corrosion inhibition and anti-bacterial efficacy of benzalkonium chloride in artificial CO2-saturated oilfield produced water [J]. Corros. Sci., 2017, 117: 24
43 Ma F L, Li J L, Zeng Z X, et al. Tribocorrosion behavior in artificial seawater and anti-microbiologically influenced corrosion properties of TiSiN-Cu coating on F690 steel [J]. J. Mater. Sci. Technol., 2019, 35: 448
44 Jia R, Yang D Q, Rahman H B A, et al. Laboratory testing of enhanced biocide mitigation of an oilfield biofilm and its microbiologically influenced corrosion of carbon steel in the presence of oilfield chemicals [J]. Int. Biodeter. Biodegr., 2017, 125: 116
45 Liu H W, Gu T Y, Zhang G A, et al. The effect of magneticfield on biomineralization and corrosion behavior of carbon steel induced by iron-oxidizing bacteria [J]. Corros. Sci., 2016, 102: 93
46 Arafat El S S, Matzdorf C A, Spadafora S J, et al. Composition and process for removing and preventing mildew and fungal growth [P]. USA Pat, 7494670, 2009
47 Akid R, Wang H, Smith T J, et al. Biological functionalization of a Sol-Gel coating for the mitigation of microbial‐induced corrosion [J]. Adv. Funct. Mater., 2008, 18: 203
48 Liu Q Q, Lu L, Gao G, et al. Research progress on fungal corrosion of metals and their protective layers in atmos-pheric environments [J]. Chin. J. Eng., 2017, 39: 1463
刘倩倩, 卢琳, 高歌等. 大气环境中金属及其保护层霉菌腐蚀研究的进展 [J]. 工程科学学报, 2017, 39: 1463
49 Wang J L, Li C J, Zhang X X, et al. Corrosion behavior of Aspergillus niger on 7075 aluminum alloy and the inhibition effect of zinc pyrithione biocide [J]. J. Electrochem. Soc., 2019, 166: G39
50 Imo E O, Orji J C, Nweke C O. Corrosion and fungal growth inhibiting effects of Piper guineense extracts [J]. J. Appl. Environ. Microbiol., 2018, 6: 37
51 Shi J, Qu Y P. Study on organic coatings for mould corrosion resistance in ocean climate [J]. Surf. Technol., 2011, 40(1): 56
石娇, 曲彦平. 耐海洋环境中霉菌腐蚀有机涂层的研究 [J]. 表面技术, 2011, 40(1): 56
52 Zhao L H, Duan Y P. Mould resistance of protective layer on high-strength alloy structural steel and high-strength aluminum alloy [J]. Equip. Environ. Eng., 2015, 12(4): 82
赵立华, 段渝平. 高强度合金结构钢与高强度铝合金防护层的耐霉性研究 [J]. 装备环境工程, 2015, 12(4): 82
53 Brown T T, Lee J S. Microscopic evaluation of fungal cleaning protocols for aircraft coatings [J]. Microsc. Microanal., 2019, 25 (): 718
[1] FANG Haojie, QU Hua, YANG Lihui, ZENG Qingya, WANG Lidan, YUAN Ning, HOU Baorong, CAO Lixin, YUAN Xundao. Corrosion Behavior of 9C Series of Powder Metallurgy Al-alloy with High Corrosion Resistance[J]. 中国腐蚀与防护学报, 2021, 41(6): 775-785.
[2] HE Yongjun, ZHANG Tiansui, WANG Haitao, ZHANG Fei, LI Guangfang, LIU Hongfang. Research Progress of Biocides for Microbiologically Influenced Corrosion[J]. 中国腐蚀与防护学报, 2021, 41(6): 748-756.
[3] LV Meiying, LI Zhenxin, DU Min, WAN Zixuan. Effect of Culture Medium on Microbiologically Influenced Corrosion[J]. 中国腐蚀与防护学报, 2021, 41(6): 757-764.
[4] ZHANG Fei, WANG Haitao, HE Yongjun, ZHANG Tiansui, LIU Hongfang. Case Analysis of Microbial Corrosion in Product Oil Pipeline[J]. 中国腐蚀与防护学报, 2021, 41(6): 795-803.
[5] LIU Quanbing, LIU Zongde, GUO Shengyang, XIAO Yi. Galvanic Corrosion Behavior of 5083 Al-alloy and 30CrMnSiA Steel in NaCl solutions[J]. 中国腐蚀与防护学报, 2021, 41(6): 883-891.
[6] ZHANG Xin, LIN Muyan, YANG Guangheng, WANG Zehua, SHAO Jia, ZHOU Zehua. Effect of Er on Corrosion Behavior of Marine Engineering 5052 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(5): 686-690.
[7] SHI Jian, HU Xuewen, HE Bo, YANG Zheng, GUO Rui, WANG Fei. Sulfuric Acid Corrosion Resistance of Q345NS Steel Welded Joint[J]. 中国腐蚀与防护学报, 2021, 41(4): 565-570.
[8] LI Guangquan, LI Guangfang, WANG Junqiang, ZHANG Tiansui, ZHANG Fei, JIANG Ximin, LIU Hongfang. Microbiologically Influenced Corrosion Mechanism and Protection of Offshore Pipelines[J]. 中国腐蚀与防护学报, 2021, 41(4): 429-438.
[9] ZHAN Dongdong, WANG Cheng, QIAN Jiyu, WANG Wen, ZHOU Tong, ZHU Shenglong, WANG Fuhui. Effect of Trace Cl- and Cu2+ Ions on Corrosion Behavior of 3A21 Al-alloy in Ethylene Glycol Coolant[J]. 中国腐蚀与防护学报, 2021, 41(3): 383-388.
[10] MA Gang, GU Yanhong, ZHAO Jie. Research Progress on Sulfate-reducing Bacteria Induced Corrosion of Steels[J]. 中国腐蚀与防护学报, 2021, 41(3): 289-297.
[11] HE Jing, YANG Chuntian, LI Zhong. Research Progress of Microbiologically Influenced Corrosion and Protection in Building Industry[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[12] WANG Kuntai, CHEN Fu, LI Huan, LUO Mina, HE Jie, LIAO Zihan. Corrosion Behavior of L245 Pipeline Steel in Shale Gas Fracturing Produced Water Containing Iron Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
[13] QIAO Jisen, XIA Zonghui, LIU Libo, XU Jiamin, LIU Xudong. Corrosion Resistance of Aluminum-magnesium Bimetal Composite Material Prepared by Isothermal Indirect Extrusion[J]. 中国腐蚀与防护学报, 2021, 41(2): 255-262.
[14] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[15] DING Qingmiao, QIN Yongxiang, CUI Yanyu. Galvanic Corrosion of Aircraft Components in Atmospheric Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 455-462.
[1] . Study on High Temperature Oxidation of Al60Mn13Ti25V2 Intermetallic[J]. J Chin Soc Corr Pro, 2004, 24(3): 129 -134 .