Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (5): 705-711    DOI: 10.11902/1005.4537.2020.207
Current Issue | Archive | Adv Search |
Influence of Cl- Concentration on Corrosion Behavior of Reinforced Concrete in Soil
DING Qingmiao1, GAO Yuning1(), HOU Wenliang2, QIN Yongxiang1
1.College of Airport, Civil Aviation University of China, Tianjin 300300, China
2.No. 3 Branch Company, China Petroleum Pipeline Engineering Co. Ltd. , Zhongmu County, Zhengzhou 451450, China
Download:  HTML  PDF(4705KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The influence of Cl- on the corrosion behavior of reinforced concrete was studied by means of numerical simulation method, aiming at the troubles related with the chloride ion induced corrosion of reinforced concrete structure in the environment and the damages of the concrete, as well as the reinforced bars within the concrete. The results show that: when reinforced concrete is suffered from attack in a chloride ion containing environment, the chloride ion concentration is greater in the boundary layer near the concrete surface; as the experiment progresses, the chloride ion content inside the concrete increases, and the gradient of chloride ion concentration on the reinforced steel surface gradually increases. The corrosion depth of the steel bars in the concrete is related to the chloride ion content, and the corrosion is more serious in locations where the chloride ion concentration is high on the surface of the steel bars. In addition, when the Cl- concentration range is between 100 and 600 mol/m3, the relationship between Cl- concentration and passivation time T of the steel bar may accord with a quartic function, while a quintic function for relationship between the Cl- concentration and the potential E of the steel bar surface.

Key words:  reinforced concrete      soil      Cl- concentration      corrosion      numerical simulation     
Received:  23 October 2020     
ZTFLH:  TG174  
Fund: Basic Scientific Research Service Fee of Central University of Civil Aviation University of China(3122019107)
Corresponding Authors:  GAO Yuning     E-mail:  1365331633@qq.com
About author:  GAO Yuning, E-mail: 1365331633@qq.com

Cite this article: 

DING Qingmiao, GAO Yuning, HOU Wenliang, QIN Yongxiang. Influence of Cl- Concentration on Corrosion Behavior of Reinforced Concrete in Soil. Journal of Chinese Society for Corrosion and protection, 2021, 41(5): 705-711.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.207     OR     https://www.jcscp.org/EN/Y2021/V41/I5/705

Fig.1  Three-dimensional physical model (a) and two-dimensional physical model (b) of reinforced concrete
Fig.2  Reinforced concrete meshing model: (a) coarser, (b) coarse, (c) normal, (d) fine
Grid specificationsSmallest size / mmNumber of trianglesNumber of edge unitsNumber of vertex units
Coarser0.6380608
Coarse0.2471688
Normal0.03782888
Fine0.0310721048
Table 1  Statistics of grid division results
Fig.3  Cl- concentration around steel bars
Fig.4  Schematic diagram of current flow of micro-element
Fig.5  Cl- distribution cloud map in reinforced concrete at 100 d (a), 300 d (b), 500 d (c), 700 d (d) and 1000 d (e)
Fig.6  Chloride ion concentration changes with diffusion depth
Fig.7  Chamges of chloride ion concentration (a) and corrosion depth (b) on the surface of steel bars
Fig.8  Chloride ion distribution cloud diagram in reinforced concrete with 100 mol/m3 (a), 200 mol/m3 (b), 300 mol/m3 (c), 400 mol/m3 (d), 500 mol/m3 (e) and 600 mol/m3 (f) chloride ion concentrationat 1000 d
Fig.9  Relationship between chloride ion concentration and time at the highest point of steel bars
Fig.10  Chamges rebar deactivation time (a) and electrode potential (b) with chloride ion concentration
Fig.11  Effect of chloride ion concentration on the corrosion depth of steel bars
Fig.12  Corrosion depth of the steel bar surface with 100 mol/m3 (a), 200 mol/m3 (b), 300 mol/m3 (c), 400 mol/m3 (d), 500 mol/m3 (e) and 600 mol/m3 (f) chloride ion concentration in the environment at 1000 d
1 Aslani F, Dehestani M. Probabilistic impacts of corrosion on structural failure and performance limits of reinforced concrete beams [J]. Constr. Build. Mater., 2020, 265: 120316
2 Hong N F. Corrosion and protection of saline soil for constructions [J]. Ind. Constr., 1998, 28(1): 5
洪乃丰. 盐渍土对建筑物的腐蚀与防护 [J]. 工业建筑, 1998, 28 (1): 5
3 Baltazar-Zamora M A, Bastidas D M, Santiago-Hurtado G, et al. Effect of silica fume and fly ash admixtures on the corrosion behavior of AISI 304 embedded in concrete exposed in 3.5% NaCl solution [J]. Materials, 2019, 12: 4007
4 Caré S, Raharinaivo A. Influence of impressed current on the initiation of damage in reinforced mortar due to corrosion of embedded Steel [J]. Cem. Concr. Res., 2007, 37: 1598
5 Medina E, Medina J M, Cobo A, et al. Evaluation of mechanical and structural behavior of austenitic and duplex stainless steel reinforcements [J]. Constr. Build. Mater., 2015, 78: 1
6 Gerdes A, Wittmann F H. Influence of stress corrosion on fracture energy of cementitious materials [A]. Fracture Mechanics of Concrete Structures [C]. Freiburg: AEDIFICATIO, 1995: 271
7 Konin A, François R, Arliguie G. Analysis of progressive damage to reinforced ordinary and high performance concrete in relation to loading [J]. Mater. Struct., 1998, 31: 27
8 Yu H F, Sun W, Wang J C, et al. Circumstance of salt lakes and the durability of concrete or reinforced concrete [J]. Ind. Constr., 2003, 33(3): 1
余红发, 孙伟, 王甲春等. 盐湖地区的环境条件与混凝土和钢筋混凝土结构的耐久性 [J]. 工业建筑, 2003, 33(3): 1
9 Fang J X. Mechanism and simulation study of steel bar corrosion in concrete exposed to chloride environment [D]. Hangzhou: Zhejiang University, 2017
房久鑫. 氯盐环境下混凝土内部钢筋的腐蚀机理和模拟研究 [D]. 杭州: 浙江大学, 2017
10 Leng F G, Ma X X, Ding W, et al. Durability analysis of RC piles exposed naturally in coastal saline soil environment for 17 years [J]. Build. Struct., 2011, 41(11): 148
冷发光, 马孝轩, 丁威等. 滨海盐渍土环境中暴露17年的钢筋混凝土桩耐久性分析 [J]. 建筑结构, 2011, 41(11): 148
11 Wang D R. Destruction of reinforced concrete by saline soil and its prevention [J]. Mod. Enterp. Cult., 2009, (26): 120
王大荣. 盐渍土对钢筋混凝土的破坏及其防止办法 [J]. 现代企业文化, 2009, (26): 120
12 Qiu L F. Experimental study on corrosion process of reinforced concrete in sulphate-chloride environment [D]. Nanjing: Nanjing University of Science and Technology, 2016
邱林峰. 硫酸盐-氯盐环境下钢筋混凝土腐蚀过程的实验研究 [D]. 南京: 南京理工大学, 2016
13 Ding Q M, Qin Y X, Cui Y Y. Investigation of corrosion behavior of 3Cr steel in 3.5%NaCl solution based on COMSOL multiphysics simulation research [J]. Mater. Prot., 2020, 53(1): 37
丁清苗, 秦永祥, 崔艳雨. 基于COMSOL Multiphysics的3Cr钢在3.5%NaCl溶液中的腐蚀行为研究 [J]. 材料保护, 2020, 53(1): 37
14 Ding Q M, Qin Y X, Cui Y Y. Galvanic corrosion of Mg alloy AE44/Mild steel in 3.5%NaCl solution [J]. Mater. Prot., 2020, 53(6): 27
丁清苗, 秦永祥, 崔艳雨. Mg合金AE44/低碳钢在3.5%NaCl溶液中的电偶腐蚀研究 [J]. 材料保护, 2020, 53(6): 27
15 Probstein R F. Physicochemical Hydrodynamics: An Introduction [M]. Shanghai: East China Chemical Engineering Institute Press, 1992
16 Wu L J, Ju X L, Ma Y F, et al. Prediction model of chloride diffusion concentrations in concrete considering the influence of blocking effects of steel reinforcement [J]. J. Build. Mater., in Press
吴林键, 鞠学莉, 马原飞等. 钢筋对混凝土中氯离子扩散浓度的阻挡效应预测模型 [J]. 建筑材料学报, 待发表)
17 Yu H, Hartt W H. Correction of chloride threshold concentration and time-to-corrosion due to reinforcement presence [J]. Mater. Corros., 2011, 62: 423
18 Wang Y Z, Gong X L, Wu L J. Prediction model of chloride diffusion in concrete considering the coupling effects of coarse aggregate and steel reinforcement exposed to marine tidal environment [J]. Constr. Build. Mater., 2019, 216: 40
19 Xu L, Pang M W, Li X N, et al. Effect of rebar position and rebar arrangement on rust expansion laws of reinforced concrete beam [J]. Mater. Prot., 2020, 53(1): 106
徐立, 庞明伟, 李潇南等. 钢筋位置和钢筋排布对钢筋混凝土梁锈胀规律的影响 [J]. 材料保护, 2020, 53(1): 106
20 Kumar V. Protection of steel reinforcement for concrete--A review [J]. Corros. Rev., 1998, 16: 317
21 Christodoulou C, Goodier C, Austin S, et al. Diagnosing the cause of incipient anodes in repaired reinforced concrete structures [J]. Corros. Sci., 2013, 69: 123
22 Guo R Q, Guo Z W, Shi Y Y. Review on research of critical chloride concentration in initial corrosion time of steel bar [J]. Bull. Chin. Ceram. Soc., 2020, 39: 2706
郭瑞琦, 郭增伟, 施跃毅. 钢筋初始锈蚀时刻的氯离子临界浓度研究综述 [J]. 硅酸盐通报, 2020, 39: 2706
[1] MA Qi, CAI Jingshun, MU Song, ZHOU Xiaocheng, LIU Kai, LIU Jianzhong, LIU Jiaping. Composite Organic Compound as Corrosion Inhibitor for Reinforced Steel in Simulated Concrete Pore Solution or Mortar Specimen[J]. 中国腐蚀与防护学报, 2021, 41(5): 659-666.
[2] SHI Jian, HU Xuewen, ZHANG Daoliu, CAO Huidan, HE Bo, PU Hong, GUO Rui, WANG Fei. Influence of Microstructure on Corrosion Resistance of High Strength Weathering Steel[J]. 中国腐蚀与防护学报, 2021, 41(5): 721-726.
[3] XIA Xiaojian, CAI Jianbin, LIN Deyuan, WAN Xinyuan, LI Yangsen, ZHANG Biaohua, CHEN Yunxiang, HAN Jiceng, ZOU Zhimin, JIANG Chunhai. Corrosion Status, Corrosion Mechanisms and Anti-corrosion Measures in Coastal Substations[J]. 中国腐蚀与防护学报, 2021, 41(5): 697-704.
[4] WU Lintao, ZHOU Zehua, ZHANG Xin, YANG Guangheng, ZHANG Kaicheng, WANG Guangyu. Long-term Corrosion Resistance of Plasma Sprayed FeCrMoCBY Fe-based Amorphous Coating in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(5): 717-720.
[5] LIU Hongyu, ZHANG Xiqing, TENG Yingxue, LI Shengli. Corrosion Resistance and Antifouling Performance of Copper-bearing Low-carbon Steel in Marine Environment[J]. 中国腐蚀与防护学报, 2021, 41(5): 679-685.
[6] YANG Guangheng, ZHOU Zehua, ZHANG Xin, WU Lintao, MEI Wan. Influence of Magnetic Field on Corrosion Behavior of Al-Mg Alloys with Different Mg Content[J]. 中国腐蚀与防护学报, 2021, 41(5): 633-638.
[7] GONG Ke, WU Ming, ZHANG Sheng. Effect of HCO3- on Stress Corrosion Cracking Behavior of X90 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(5): 727-731.
[8] ZHANG Xin, LIN Muyan, YANG Guangheng, WANG Zehua, SHAO Jia, ZHOU Zehua. Effect of Er on Corrosion Behavior of Marine Engineering 5052 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(5): 686-690.
[9] ZHU Zhe, CAI Jingshun, HONG Jinxiang, MU Song, ZHOU Xiaocheng, MA Qi, CHEN Cuicui. Effect of Hydration Response Nanomaterials on Corrosion Resistance of Reinforced Concrete[J]. 中国腐蚀与防护学报, 2021, 41(5): 732-736.
[10] LI Rui, CUI Yu, LIU Li, FAN Lei, MENG Fandi, WANG Fuhui. Corrosion Behavior of Ti60 Alloy in Fog of NaCl Solution at 600 ℃[J]. 中国腐蚀与防护学报, 2021, 41(5): 595-601.
[11] WANG Jiaming, YANG Haodong, DU Min, PENG Wenshan, CHEN Hanlin, GUO Weimin, LIN Cunguo. Corrosion of B10 Cu-Ni Alloy in Seawater Polluted by High Concentration of NH4+[J]. 中国腐蚀与防护学报, 2021, 41(5): 609-616.
[12] GAI Xipeng, LEI Li, CUI Zhongyu. Pitting Corrosion Behavior of 304 Stainless Steel in Simulated Concrete Pore Solutions[J]. 中国腐蚀与防护学报, 2021, 41(5): 646-652.
[13] MA Shide, LIU Xin, WANG Zaidong, REN Yadong, TAI Yu, HAN Wen, DUAN Jizhou. Characterization of Seawater Corrosion Interface of Zinc Coated Steel Plate in Zhong-gang Harbor[J]. 中国腐蚀与防护学报, 2021, 41(5): 585-594.
[14] LANG Fengjun, HUANG Feng, XU Jinqiao, LI Liwei, YUE Jiangbo, LIU Jing. Composition Design and Corrosion Resistance of Mg Microallyed X70 Grade Acid Resistant Submarine Pipeline Steel (X70MOS)[J]. 中国腐蚀与防护学报, 2021, 41(5): 617-624.
[15] FENG Yanpeng, ZHANG Xian, WU Kaiming, YANG Miao. Influence of Heat Treatment Process on Microstructure and Corrosion Resistance of Ultrafine Bainite Steel[J]. 中国腐蚀与防护学报, 2021, 41(5): 602-608.
No Suggested Reading articles found!