Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2019, Vol. 39 Issue (4): 313-318    DOI: 10.11902/1005.4537.2018.116
Current Issue | Archive | Adv Search |
Preparation and Corrosion Resistance of Nb2N Coating on TC4 Ti-alloy
SHI Kunyu(),ZHANG Jinzhong,ZHANG Yi,WAN Yi
Department of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
Download:  HTML  PDF(2536KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nb2N coating was deposited onto TC4 (Ti-6Al-4V) substrates via a double cathode glow discharge plasma method. The microstructure of the coating was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectrometer (EDS). The adhesive property of Nb2N coating to the substrate was assessed by scratch test. While the electrochemical behavior in 3.5% (mass fraction) NaCl solution of the coating was investigated with electrochemical techniques, such as open circuit potential (OCP) measurement, potentiodynamic polarization and EIS. Result shows that the as-deposited coating of 21 μm in thickness is dense with a homogeneous microstructure without obvious voids or micro-crack. Compared with TC4 matrix, the open-circuit potential of Nb2N coating can reach a higher steady-state value within a shorter time interval, in other words, the coating presents higher corrosion potential (Ecorr) and lower corrosion current. The data of EIS show that the Nb2N coating shows a single capacitive reactance arc with higher capacitive reactance, larger phase angle maximum, as well as wider phase angle plateau, in the contrary to those of the bare TC4 Ti-alloy.

Key words:  double cathode glow discharge plasma method      Nb2N coating      microstructure      corrosion resistance      TC4(Ti-6Al-4V) alloy     
Received:  22 August 2018     
ZTFLH:  TG174.445  
Fund: Wuhan Institute of Technology Scientific Research Fund(k201519)
Corresponding Authors:  Kunyu SHI     E-mail:  shikunyuwh@126.com

Cite this article: 

SHI Kunyu,ZHANG Jinzhong,ZHANG Yi,WAN Yi. Preparation and Corrosion Resistance of Nb2N Coating on TC4 Ti-alloy. Journal of Chinese Society for Corrosion and protection, 2019, 39(4): 313-318.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2018.116     OR     https://www.jcscp.org/EN/Y2019/V39/I4/313

Fig.1  XRD pattern of Nb2N coating
Fig.2  Cross-sectional SEM morphology of the as-deposit-ed Nb2N coating (a) and EDS results of points A (b) and B (c) in Fig.2a
Fig.3  Acoustic emission signals of Nb2N coating during scratching
Fig.4  Open circuit potentials of Nb2N coating and TC4 alloy in 3.5%NaCl solution
Fig.5  Polarization curves of TC4 alloy and Nb2N coating in 3.5%NaCl solution
Sample

Ecorr

V vs SCE

Icorr

A·cm-2

RP 106 Ω·cm2Pe%
Ti-6Al-4V-0.421.21×10-71.46---
Nb2N coating-0.069.41×10-94.5892.22
Table 1  Fitting values of various electrochemical parameters based on polarization curves
Fig.6  Nyquist (a) and Bode (b) polts of Ti-6Al-4V alloy and Nb2N coating in 3.5%NaCl solution
Fig.7  Equivalent circuit of electrochemical impedance spectroscopies of Nb2N coating and TC4 alloy in 3.5%NaCl solution
SampleRct / Ω·cm2Q1 / Ω-1·cm-2·snn1R1 / Ω·cm2Q2 / Ω-1·cm-2·snn2R2 / Ω·cm2χ2
Nb2N coating25.018.82×10-80.8947480.098.928×10-60.985.136×1071.49×10-3
TC426.294.549×10-70.819214.211.125×10-50.906.935×1061.29×10-3
Table 2  Fitted values of various electrochemical parameters for Nb2N coating and TC4 alloy
[1] LeyensC, PetersM. Titanium and Titanium Alloys [M]. Weinheim: Wiley-VCH, 2003: 151
[2] BudinskiK G. Tribological properties of titanium alloys [J]. Wear, 1991, 151: 203
3 Chinese Society for Corrosion and Protection. Corrosion Resistance of Non-ferrous Metals and its Application [M]. Beijing: Chemical Industry Press, 1995: 75
3 (中国腐蚀与防护学会. 有色金属的耐腐蚀性及其应用 [M]. 北京: 化学工业出版社, 1995: 75)
[4] WangH F, LiJ, YangH L, et al. Fabrication, characterization and in vitro biocompatibility evaluation of porous Ta-Nb alloy for bone tissue engineering [J]. Mater. Sci. Eng., 2014, C40: 71
[5] Br?kaJ, HotovyI. Processes on the target, discharge and NbN film behaviour in reactive dc magnetron deposition [J]. Vacuum, 1995, 46: 1407
[6] LiuC, BiQ, MatthewsA. Tribological and electrochemical performance of PVD TiN coatings on the femoral head of Ti-6Al-4V artificial hip joints [J]. Surf. Coat. Technol., 2003, 163/164: 597
[7] WongM S, SproulW D, ChuX, et al. Reactive magnetron sputter deposition of niobium nitride films [J]. J. Vac. Sci. Technol., 1993, 11A: 1528
[8] XuZ, LiuX, ZhangP, et al. Double glow plasma surface alloying and plasma nitriding [J]. Surf. Coat. Technol., 2007, 201(9-11): 4822
9 SongJ H, ZhangT, HouJ D, et al. The influences of deposition temperature on the microstructure of niobium nitride films [J]. J. Beijing Normal Univ. (Nat. Sci.), 2001, 37: 41
9 (宋教花, 张涛, 侯君达等. 沉积温度对NbN膜层微观结构的影响 [J]. 北京师范大学学报 (自然科学版), 2001, 37: 41)
[10] ChihiT, ParlebasJ C, GuemmazM. First principles study of structural, elastic, electronic and optical properties of Nb2N and Ta2N compounds [J]. Phys. Status Solidi, 2011, 248B: 2787
[11] YangX Z. The fabrication and Research of NbN and NbSi flims applying in SNSPDs [D]. Nanjing: Nanjing University, 2015
[11] (杨小忠. 用于超导单光子探测器的氮化铌与铌硅薄膜制备研究 [D]. 南京: 南京大学, 2015)
[12] DemyashevG M, TregulovV R, ChuzhkoR K. crystallization and structure of β-Nb2N and γ-Ta2N [J]. J. Cryst. Growth, 1983, 63: 135
[13] YinC M, XuL Q, JuZ C, et al. Cubic niobium nitride nanomaterials as anode materiasl in lithium ion rechargeable battery: Synthesis and property [J]. Chinese J. Inorg. Chem., 2012, 28: 2612
[13] (尹从明, 徐立强, 鞠治成等. 锂离子电池负极材料立方相氮化铌纳米材料的制备与性能 (英文) [J]. 无机化学学报, 2012, 28: 2612)
[14] HogmarkS, JacobsonS, LarssonM. Design and evaluation of tribological coatings [J]. Wear, 2000, 246: 20
[15] LaiD H. Influence of Al alloying on the properties of MoSi2: First-principles calculation and experiment study [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012
[15] (赖道辉. Al合金化对MoSi2性能的影响: 第一性原理计算与实验研究 [D]. 南京: 南京航空航天大学, 2012)
[16] MaasJ H, BastinG F, Van LooF J J, et al. On the texture in diffusion-grown layers of silicides and germanides with the FeB structure, MeX (Me=Ti, Zr; X=Si, Ge) or the ZrSi2 structure (ZrSi2, HfSi2, ZrGe2) [J]. J. Appl. Crystallogr., 1984, 17: 103
[17] BerkeleyD W, SallamH E M, Nayeb-HashemiH. The effect of pH on the mechanism of corrosion and stress corrosion and degradation of mechanical properties of AA6061 and Nextel 440 fiber-reinforced AA6061 composite [J]. Corros. Sci., 1998, 40: 141
[18] MansfeldF, ZhangG, ChenC. Evaluation of sealing methods for anodized aluminum alloys with electrochemical impedance spectroscopy (EIS) [J]. Plat. Surf. Finish., 1997, 84: 72
[1] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[2] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] BAO Ren, ZHOU Genshu, LI Hongwei. Preparation of High-tin Bronze Corrosion-resistant Coating by Potentiostatic Pulse Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[4] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[5] LIU Haixia, HUANG Feng, YUAN Wei, HU Qian, LIU Jing. Corrosion Behavior of 690 MPa Grade High Strength Bainite Steel in a Simulated Rural Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[6] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[7] WEN Yang, XIONG Lin, CHEN Wei, XUE Gang, SONG Wenxue. Chloride Penetration Resistance of Polyvinyl Alcohol Fiber Concrete under Dry and Wet Cycle in Chloride Salt Solutions[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
[8] CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[9] WANG Le,YI Danqing,LIU Huiqun,JIANG Long,FENG Chun. Effect of Ru on Corrosion Behavior of Ti-6Al-4V Alloy and Its Mechanism[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[10] SHI Chao,SHAO Yawei,XIONG Yi,LIU Guangming,YU Yuelong,YANG Zhiguang,XU Chuanqin. Influence of Silane Coupling Agent Modified Zinc Phosphate on Anticorrosion Property of Epoxy Coating[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[11] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[12] YANG Yinchu,FU Xiuqing,LIU Lin,MA Wenke,SHEN Moqi. Electrochemical Corrosion of Ni-P-BN(h)-Al2O3 Composite Coating Deposited by Spray Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[13] JIANG Dongxue,FU Ying,ZHANG Junwei,ZHANG Wei,XIN Li,ZHU Shenglong,WANG Fuhui. Preparation and Properties of Alumina Ceramic Film on Ti-alloy Surface[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[14] YUAN Wei,HUANG Feng,GAN Lijun,GE Fangyu,LIU Jing. Effect of Microstructure on Hydrogen Induced Cracking and Hydrogen Trapping Behavior of X100 Pipeline Steel[J]. 中国腐蚀与防护学报, 2019, 39(6): 536-542.
[15] WEI Xinxin,ZHANG Bo,MA Xiuliang. TEM Investigation to Oxide Scale Formed on Single Crystal Alloy FeCr15Ni15 at High Temperature[J]. 中国腐蚀与防护学报, 2019, 39(5): 417-422.
No Suggested Reading articles found!