Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (4): 341-346    DOI: 10.11902/1005.4537.2017.118
Orginal Article Current Issue | Archive | Adv Search |
AC Interference Corrosion of Pipeline Steel Beneath Delaminated Coating with Holiday
Xiaolin WANG1, Maocheng YAN2(), Yun SHU2, Cheng SUN2, Wei KE2
1 Fushun Research Institute of Petroleum and Petrochemicals, SINOPEC, Fushun 113001, China
2 National Engineering Research Center for Corrosion Control, Environment Corrosion Center, Instituteof Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(5294KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

AC interference corrosion of X80 pipeline steel beneath a delaminated coating with an artificial damage is investigated via a simulated crevice cell by means of microelectrode technique in artificial neutral soil solution NS4. The results show that the applied AC interference may induce the negative shift of the free corrosion potential of X80 steel. With the increase of AC current density, the anodic dissolution rate of X80 steel increases, while the corrosion pattern changes from uniform corrosion to local corrosion. The corrosion of pipeline steel just on the damaged spot is the most serious, however, the corrosion attack of the steel beneath the delaminated coating around the damaged spot is slightly alleviated. When the AC interference current density increases up to 100 A/m2, serious pitting corrosion appears on X80 steel surface, where locates even far from the damaged spot beneath the delaminated coating. The influence of AC interference on the corrosion behavior of pipeline steel beneath the damaged coating was discussed from aspects of the rectification effect of the AC interference, the irreversibility of anode reaction and the effect of AC on the double layer structure at the interface steel/solution.

Key words:  pipeline steel      AC interference      coating      cathodic protection      electrical interference     
Received:  20 July 2017     
ZTFLH:  TG172.9  
Fund: Supported by National Natural Science Foundation of China (51471176) and National Research and Development Infrastructure and Facility Development Program of China (2005DKA10400)
About author: 

These authors contributed equally to this work.

Cite this article: 

Xiaolin WANG, Maocheng YAN, Yun SHU, Cheng SUN, Wei KE. AC Interference Corrosion of Pipeline Steel Beneath Delaminated Coating with Holiday. Journal of Chinese Society for Corrosion and protection, 2017, 37(4): 341-346.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2017.118     OR     https://www.jcscp.org/EN/Y2017/V37/I4/341

Fig.1  Electrochemical cell simulating setup of corrosion of pipeline steel under disbonded coating
Fig.2  Schematic of experimental setup for AC interference application and test on pipeline steel at coating defect
Fig.3  Variations of corrosion potential of X80 pipeline steel with time under different AC current density interference
Fig.4  Potential evolutions of X80 steel at various positions under disbonded coating in the conditions of AC interferences of 20 A/m2 (a) and 100 A/m2 (b)
Fig.5  Potential distributions of X80 steel under disbonded coating in the conditions of AC interferences of 20 A/m2 (a) and 100 A/m2 (b)
Fig.6  SEM images of corrosion products of X80 steel at coating defect (a) and different positions with the distances of 45 mm (b), 125 mm (c) and 245 mm (d) from the defect under disbonded coating after immersion in NS4 solution for 72 h on the condition of AC interference of 20 A/m2
Fig.7  SEM surface morphologies of X80 steel at coating defect (a1~c1) and different positions with the distances of 45 mm (a2~c2), 125 mm (a3~c3) and 245 mm (a4~c4) from the defect under disbonded coating after immersion in NS4 solution for 72 h on the conditions of AC interferences of 0 (a1~a4), 20 A/m2 (b1~b4) and 100 A/m2 (c1~c4)
[1] Hu S X, Lu M X, Du Y X, et al.New opinions about the AC corrosion of pipelines[J]. Corros. Prot., 2010, 31: 419(胡士信, 路民旭, 杜艳霞等. 管道交流腐蚀的新观点[J]. 腐蚀与防护, 2010, 31: 419)
[2] Li Z L, Sun Y F, Chen S K, et al.Influence of alternating current electrified railway stray current on buried pipelines[J]. Corros. Prot., 2011, 32: 177(李自力, 孙云峰, 陈绍凯等. 交流电气化铁路杂散电流对埋地管道电位影响规律[J]. 腐蚀与防护, 2011, 32: 177)
[3] Wang X H, Liu J Y, He R Y, et al.Disturbed corrosion of buried gas pipe-lines induced by rail traffic dynamic stray current[J]. Corros. Prot., 2010, 31: 193(王新华, 刘菊银, 何仁洋等. 轨道交通动态杂散电流对埋地管道的干扰腐蚀试验[J]. 腐蚀与防护, 2010, 31: 193)
[4] Hanson H R, Smart J.AC corrosion on a pipeline located in a HVAC utility corridor [A]. Corrosion 2004[C]. Houston, TX: NACEInternational, 2004
[5] Yan M C, Yang S, Xu J, et al.Stress corrosion cracking of X80 pipeline steel at coating defect in acidic soil[J]. Acta Metall. Sin., 2016, 52: 1133(闫茂成, 杨霜, 许进等. 酸性土壤中破损防腐层下X80管线钢的应力腐蚀行为[J]. 金属学报, 2016, 52: 1133)
[6] Zhao J, Luo P, Teng Y P, et al.Survey and analysis of field application of 3PE pipeline coating[J]. Pipeline Tech. Equip., 2008, (6): 41(赵君, 罗鹏, 滕延平等. 管道三层PE防腐层现场应用调查与分析[J]. 管道技术与设备, 2008, (6): 41)
[7] Bosch R W, Bogaerts W F.A theoretical study of AC-induced corrosion considering diffusion phenomena[J]. Corros. Sci., 1998, 40: 323
[8] Weng Y J, Wang N.Carbon steel corrosion induced by alternating current[J]. J. Chin. Soc. Corros. Prot., 2011, 31: 270(翁永基, 王宁. 碳钢交流电腐蚀机理的探讨[J]. 中国腐蚀与防护学报, 2011, 31: 270)
[9] Wan H X, Song D D, Liu Z Y, et al.Effect of alternating current on corrosion behavior of X80 pipeline steel in near-neutral environment[J]. Acta Metall. Sin., 2017, 53: 575(万红霞, 宋东东, 刘智勇等. 交流电对X80钢在近中性环境中腐蚀行为的影响[J]. 金属学报, 2017, 53: 575)
[10] Fu A Q, Cheng Y F.Effects of alternating current on corrosion of a coated pipeline steel in a chloride-containing carbonate/bicarbonate solution[J]. Corros. Sci., 2010, 52: 612
[11] Lalvani S B, Lin X.A revised model for predicting corrosion of materials induced by alternating voltages[J]. Corros. Sci., 1996, 38: 1709
[12] Goidanich S, Lazzari L, Ormellese M.AC corrosion. Part 2: parameters influencing corrosion rate[J]. Corros. Sci., 2010, 52: 916
[13] Jiang Z T, Du Y X, Dong L, et al.Effect of ac current on corrosion potential of Q235 steel[J]. Acta Metall. Sin., 2011, 47: 997(姜子涛, 杜艳霞, 董亮等. 交流电对Q235钢腐蚀电位的影响规律研究[J]. 金属学报, 2011, 47: 997)
[14] Yang Y, Li Z L, Wen C.Effects of alternating current on X70 steel morphology and electrochemical behavior[J]. Acta Metall. Sin., 2013, 49: 43(杨燕, 李自力, 文闯. 交流电对X70钢表面形态及电化学行为的影响[J]. 金属学报, 2013, 49: 43)
[15] Wakelin R G, Sheldon C.Investigation and mitigation of AC corrosion on a 300 MM natural gas pipeline [A]. Corrosion 2004[C]. New Orleans, Louisiana: NACE International, 2004
[16] Yan M C, Wang J Q, Ke W, et al.Effectiveness of cathodic protection under simulated disbonded coating on pipelines[J]. J. Chin. Soc. Corros. Prot., 2007, 27: 257(闫茂成, 王俭秋, 柯伟等. 埋地管线剥离覆盖层下阴极保护的有效性[J]. 中国腐蚀与防护学报, 2007, 27: 257)
[17] Yan M C, Wang J Q, Han E-H, et al.Local environment under simulated disbonded coating on steel pipelines in soil solution[J]. Corros. Sci., 2008, 50: 1331
[18] McCollum B, Ahlborn G H. The influence of frequency of alternating or infrequently reversed current on electrolytic corrosion[J]. J. Franklin Inst., 1916, 182: 108
[1] LIU Yang, WU Jinyi, YAN Xiaoyu, CHAI Ke. Effect of Bacillus flexus on Degradation of Polyurethane Varnish Coating in Marine Environment[J]. 中国腐蚀与防护学报, 2021, 41(1): 36-42.
[2] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[3] DAI Ting, GU Yanhong, GAO Hui, LIU Kailong, XIE Xiaohui, JIAO Xiangdong. Electrochemical Performance of Underwater Friction Stud Welding Joint in CO2 Saturated NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[4] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[5] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[6] REN Yan, QIAN Yuhai, ZHANG Xintao, XU Jingjun, ZUO Jun, LI Meishuan. Effect of Thermal Shock on Mechanical Properties of Siliconized Graphite with ZrB2-SiC-La2O3/SiC Coating[J]. 中国腐蚀与防护学报, 2021, 41(1): 29-35.
[7] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[8] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[9] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[10] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[11] WANG Xinhua, YANG Yong, CHEN Yingchun, WEI Kailing. Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[12] LIANG Yi, DU Yanxia. Research Progress on Evaluation Criteria and Mechanism of Corrosion Under Cathodic Protection and AC Interference[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[13] SUN Shuo, YANG Jie, QIAN Xinzhu, CHANG Renli. Preparation and Electrochemical Corrosion Behavior of Electroless Plated Ni-Cr-P Alloy Coating[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[14] CAO Jingyi, WANG Zhiqiao, LI Liang, MENG Fandi, LIU Li, WANG Fuhui. Failure Mechanism of Organic Coating with Modified Graphene Under Simulated Deep-sea Alternating Hydrostatic Pressure[J]. 中国腐蚀与防护学报, 2020, 40(2): 139-145.
[15] CHEN Xu, LI Shuaibing, ZHENG Zhongshuo, XIAO Jibo, MING Nanxi, HE Chuan. Microbial Corrosion Behavior of X70 Pipeline Steel in an Artificial Solution for Simulation of Soil Corrosivityat Daqing Area[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
No Suggested Reading articles found!