Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (5): 457-462    DOI: 10.11902/1005.4537.2016.071
Orginal Article Current Issue | Archive | Adv Search |
Effect of pH Value on Structure and Corrosion Resistance of Electrodeposited Ni-W Alloy Coating
Qiongyu ZHOU1,2,Xiaofen WANG1(),Qingdong ZHONG2,Cao WANG1,Yifeng HU1
1. School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
2. Shanghai Key Laboratory of Modern Metallurgy and Material Processing, Shanghai University, Shanghai 200072, China
Download:  HTML  PDF(2130KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ni-W alloy coating was electrodeposited on low-carbon steel from an aqueous citrate-sulphate,while the effect of pH value on surface state, structure and corrosion resistance of the Ni-W alloy coatings was investigated. The result shows that: nanocrystalline Ni-W alloy coatings were produced when pH<7, while amorphous Ni-W alloy coatings were electrodeposited when pH>7. The hardness of Ni-W alloy coatings is correlated with the W content in the alloy coating. In contrast with low-carbon steel, Ni-W alloy coatings show much positive corrosion potential and much lower corrosion current density. Furthermore, the amorphous Ni-W alloy coating electrodeposited by pH=7.5 shows the best corrosion resistance due to the peculiar passivity of the coating in 3.5%(mass fraction) NaCl.

Key words:  Ni-W alloy      coating      electrodeposition      corrosion resistance      passive      electrochemical impedance spectroscopy     

Cite this article: 

Qiongyu ZHOU,Xiaofen WANG,Qingdong ZHONG,Cao WANG,Yifeng HU. Effect of pH Value on Structure and Corrosion Resistance of Electrodeposited Ni-W Alloy Coating. Journal of Chinese Society for Corrosion and protection, 2016, 36(5): 457-462.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.071     OR     https://www.jcscp.org/EN/Y2016/V36/I5/457

Fig.1  XRD spectra of Ni-W alloy coatings obtained in ele-ctroplating baths with different pH values
Fig.2  W content in Ni-W alloy coatings and current efficiency as a function of pH value
Fig.3  Surface morphotogies of Ni-W alloy coatings obtained at different pH values: (a) pH=4.5; (b) pH=5.5; (c) pH=7.5; (d) pH=8.5
Fig.4  Cross-section images of Ni-W alloy coatings obtained at different pH values: (a) pH=5.5; (b) pH=7.5
Fig.5  Hardness of Ni-W alloy coatings as functions of pH value (a) and atomic fraction of W (b)
Sample pH Ecorr / V Icorr / μAcm-2
Mild steel --- -0.790 142.20
Ni-W alloy coating electroplated at: 4.5 -0.636 37.84
5.5 -0.591 11.57
7.5 -0.588 13.95
8.5 -0.609 27.09
Table 1  Ecorr and Icorr of mild steel and Ni-W alloy coatings in 3.5%NaCl solution
Fig.6  Tafel curves of mild steel and Ni-W alloy coatings obtained at different pH values
Fig.7  Impendance module (a) and phase angle (b) plots of Ni-W alloy coatings obtained at different pH values
[1] Zhang L Y, Ma A B, Jiang J H, et al.Effect of processing methods on microhardness and acid corrosion behavior of low-carbon steel[J]. Mater. Des., 2015, 65: 115
[2] Sheng M Q, Xu J F, Lv C K, et al.Preparation and corrosion resistance performance of Fe-Ni alloy coating on surface of mild steel[J]. Chin. J. Mater. Res., 2013, 27: 183
[2] (盛敏奇, 许继芳, 吕臣凯等. 低碳钢表面Fe-Ni合金层的制备及耐腐蚀性能[J]. 材料研究学报, 2013, 27: 183)
[3] Newby K R.Functional chromium plating[J]. Met. Finish., 1999, 97(1): 223
[4] Li Z H, Sheng M Q, Zhong Q D, et al.Influence of surface roughness of matrix on chromium coatings on the surface of H13 steel[J]. Chin. J. Mater. Res., 2010, 24(5): 455
[4] (李振华, 盛敏奇, 钟庆东等. 基体表面粗糙度对H13钢板表面镀铬层的影响[J]. 材料研究学报, 2010, 24(5): 455)
[5] Christian F, Christian D, Daniel H, et al.Potential of thick a C: H: Si films as substitute for chromium plating[J]. Surf. Coat. Technol., 2014, 241: 86
[6] Kumar U P, Kennady C J, Zhou Q.Effect of salicylaldehyde on microstructure and corrosion resistance of electrodeposited nanocrystalline Ni-W alloy coatings[J]. Surf. Coat. Technol., 2015, 283: 148
[7] Wang Y, Zhou Q, Li K, et al.Preparation of Ni-W-SiO2 nanocomposite coating and evaluation of its hardness and corrosion resistance[J]. Ceram. Int., 2015, 41(1): 79
[8] Podlaha E J, Landolt D.Induced codeposition iii. Molybdenum alloys with nickel, cobalt, and iron[J]. J. Electrochem. Soc., 1997, 144(5): 1672
[9] Davis G L, Gentry C H R. The electrodeposition of tungsten[J]. Metallurgia, 1956, 53(1): 3
[10] Lietzke M H, Holt M L.Codeposition of tungsten and iron from an aqueous ammoniacal citrate bath[J]. J. Electrochem. Soc., 1948, 94(5): 252
[11] Alimadadi H, Ahmadi M, Aliofkhazraei M, et al.Corrosion properties of electrodeposited nanocrystalline and amorphous patterned Ni-W alloy[J]. Mater. Des., 2009, 30(4): 1356
[12] Slavcheva E, Mokwa W, Schnakenberg U.Electrodeposition and properties of NiW films for MEMS application[J]. Electrochim. Acta, 2005, 50(28): 5573
[13] Sridhar T M, Eliaz N, Gileadi E.Electroplating of Ni4W[J]. Electrochem. Solid-state Lett., 2005, 8(3): C58
[14] Suli?anu N D.Electrochemical deposition of novel nanostructured magnetic thin films for advanced applications[J]. Mater. Sci. Eng., 2002, B95(3): 230
[15] Ju?k?nas R, Valsiūnas I, Pak?tas V, et al.On the state of W in electrodeposited Ni-W alloys[J]. Electrochim. Acta, 2009, 54(9): 2616
[16] Ju?k?nas R, Valsiūnas I, Pak?tas V, et al.XRD, XPS and AFM studies of the unknown phase formed on the surface during electrodeposition of Ni-W alloy[J]. Appl. Surf. Sci., 2006, 253(3): 1435
[17] Younes O, Gileadi E.Electroplating of high tungsten content Ni/W alloys[J]. Electrochem. Solid-state Lett., 2000, 3(12): 543
[18] Cesiulis H, Baltutiene A, Donten M, et al.Increase in rate of electrodeposition and in Ni (II) concentration in the bath as a way to control grain size of amorphous/nanocrystalline Ni-W alloys[J]. J. Solid State Electrochem., 2002, 6(4): 237
[19] Sunwang N, Wangyao P, Boonyongmaneerat Y.The effects of heat treatments on hardness and wear resistance in Ni-W alloy coatings[J]. Surf. Coat. Technol., 2011, 206(6): 1096
[20] Selvi V E, Seenivasan H, Rajam K S.Electrochemical corrosion behavior of pulse and DC electrodeposited Co-P coatings[J]. Surf. Coat. Technol., 2012, 206(8): 2199
[1] LIU Yang, WU Jinyi, YAN Xiaoyu, CHAI Ke. Effect of Bacillus flexus on Degradation of Polyurethane Varnish Coating in Marine Environment[J]. 中国腐蚀与防护学报, 2021, 41(1): 36-42.
[2] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[3] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[4] REN Yan, QIAN Yuhai, ZHANG Xintao, XU Jingjun, ZUO Jun, LI Meishuan. Effect of Thermal Shock on Mechanical Properties of Siliconized Graphite with ZrB2-SiC-La2O3/SiC Coating[J]. 中国腐蚀与防护学报, 2021, 41(1): 29-35.
[5] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[6] BAO Ren, ZHOU Genshu, LI Hongwei. Preparation of High-tin Bronze Corrosion-resistant Coating by Potentiostatic Pulse Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[7] LIU Haixia, HUANG Feng, YUAN Wei, HU Qian, LIU Jing. Corrosion Behavior of 690 MPa Grade High Strength Bainite Steel in a Simulated Rural Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[8] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[9] CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[10] SUN Shuo, YANG Jie, QIAN Xinzhu, CHANG Renli. Preparation and Electrochemical Corrosion Behavior of Electroless Plated Ni-Cr-P Alloy Coating[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[11] CAO Jingyi, WANG Zhiqiao, LI Liang, MENG Fandi, LIU Li, WANG Fuhui. Failure Mechanism of Organic Coating with Modified Graphene Under Simulated Deep-sea Alternating Hydrostatic Pressure[J]. 中国腐蚀与防护学报, 2020, 40(2): 139-145.
[12] WANG Le,YI Danqing,LIU Huiqun,JIANG Long,FENG Chun. Effect of Ru on Corrosion Behavior of Ti-6Al-4V Alloy and Its Mechanism[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[13] SHI Chao,SHAO Yawei,XIONG Yi,LIU Guangming,YU Yuelong,YANG Zhiguang,XU Chuanqin. Influence of Silane Coupling Agent Modified Zinc Phosphate on Anticorrosion Property of Epoxy Coating[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[14] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[15] YANG Yinchu,FU Xiuqing,LIU Lin,MA Wenke,SHEN Moqi. Electrochemical Corrosion of Ni-P-BN(h)-Al2O3 Composite Coating Deposited by Spray Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
No Suggested Reading articles found!