Please wait a minute...
J Chin Soc Corr Pro  2004, Vol. 24 Issue (2): 65-70     DOI:
Research Report Current Issue | Archive | Adv Search |
PASSIVATION MODEL OF STAINLESS STEEL IN SIMULATED COOLING WATER
Ge Honghua;Zhou Guoding; Wu Wenquan
上海电力学院环境工程系国家电力公司热力设备腐蚀与防护重点实验室
Download:  PDF(192KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The electrochemical impedance spectroscopy for stainless steel in simulated cooling water during long time immersion (1~65 days) and short time immersion (in one hour) are measured. The data are fitted using four models, and a suitable model is selected. The fitting results appear that, during the long time immersion period, the charge-transfer resistance R1 is relatively small and the double layer capacity Y01 is relatively large at the beginning of the immersion. When the immersion time increases, the values of R1 and Y01 stabilize. The film resistance R2 increases while the value of Y02 decreases continuously with the immersion, indicating that the passive film is getting thicker and more compact. The value of R2 is about four orders larger than R1 after 8 days' immersion. During the short time immersion period, R1 is close to R2 at 5 min; R1 changes little with time, but R2 increases by one order at 15 min and rises continuously with the immersion.
Key words:  stainless steel      electrochemical impedance spectroscopy      passive film      fitting      
Received:  17 December 2003     
ZTFLH:  TG174.2+1  

Cite this article: 

Ge Honghua; Zhou Guoding; Wu Wenquan. PASSIVATION MODEL OF STAINLESS STEEL IN SIMULATED COOLING WATER. J Chin Soc Corr Pro, 2004, 24(2): 65-70 .

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2004/V24/I2/65

[1]HakikiNE ,CunhaBeloMDa,SimoesAMP ,etal.Semiconduct ingpropertiesofpassivefilmsformedonstainlesssteels[J].J.Electrochem.Soc.,1998,145(11):3821-3829
[2]MontemorMF ,FerreiraMGS ,HakikiNE ,etal.Chemicalcon positionandelectronicstructureoftheoxidefilmsformedon316Lstainlesssteelandnickelbasedalloysinhightemperatureaqueousenvironments[J].Corros.Sci.,2000,42:1635-1650
[3]SchultzeJW ,LohrengelMM .Stability,reactivityandbreakdownofpassivefilms.problemsofrecentandfutureresearch[J].Elec trochim.Acta,2000,45:2499-2513
[4]BlenginoJM ,keddamM ,LabbeJP ,RobbiolaL .Physico-chemi calcharacterizationofcorrosionlayersformedonironinasodiumcarbonate-bicarbonatecontainingenvironment[J].Corros.Sci.,1995,37(4):621-643
[5]Horvat-RadosevicV ,KvastekK ,HodkoD ,PravdicV .ImpedanceofanodicallypassivatedFe80B20overpotentialsfrompassivestatetooxygenevolution[J].Electrochim.Acta,1994,39(1):119-130
[6]GaberscekM ,PejovnikS .Impedancespectroscopyasatechniqueforstudyingthespontaneouspassivationofmetalsinelectrolytes[J].Electrochim.Acta,1996,41(7/8):1137-1142
[7]CastroEB ,VilcheJR .Investigationofpassivelayersonironandiron-chromiumalloysbyelectrochemicalimpedancespectroscopy[J].Electrochim.Acta,1993,38(11):1567-1572
[8]MacDonaldDD .Reviewofmechanisticanalysisbyelectrochemicalimpedancespectroscopy[J].Electrochim.Acta,1990,35(10):1509-1525
[9]ArmstrongRD ,EdmondsonK .Theimpedanceofmetalsinthepassiveandtranspassiveregions[J].Electrochim.Acta,1973,18:937-943
[10]YinQ ,KelsallGH ,VaughanDJ ,etal.Mathematicalmodelsfortime-dependentimpedanceofpassiveelectrodes[J].J.Elec trochem.Soc.,2001,148(3):A200-A208
[11]HongT ,WalterGW ,NagumoM .Theobservationoftheearlystagesofpittingonpassivatedtype304stainlesssteelina0.5mol/LNaClsolutionatlowpotentialsinthepassiveregionbyus ingtheacimpedancemethod[J].Corros.Sci.,1996,38(9):1525-1533
[12]GonzalezJEG ,SantanaFJH ,Mirza-RoscaJC .Effectofbacte rialbiofilmon316SScorrosioninnaturalseawaterbyEIS[J].Corros.Sci.,1998,40(12):2141-2154
[13]ChaoCY ,LinLF ,MacDonaldDD .Apointdefectmodelforan odicpassivefilms.Ⅲ.Impedanceresponse[J].J .Electrochem.Soc.,1982,129(9):1874-1879
[14]MacDonaldDD .Thepointdefectmodelforthepassivestate[J].J .Electrochem.Soc.,1992,139(12):3434-3449
[15]MartiniEMA ,MullerIL .Characterizationofthefilmformedinironinboratesolutionbyelectrochemicalimpedancespectroscopy[J].Corros.Sci.,2000,42(3):443-454
[16]JamnikJ,MaierJ ,PejovnikS .Apowerfulelectricalnetworkmodelfortheimpedanceofmixedconductors[J].Electrochim.Acta,1999,44:4139-4145
[17]ItagakiM .Measurementandinterpretationofelectrochemicalimpedance[J].Corros.Eng.,1999,48:905-913
[18]AzumiK ,OhtsukaT ,SatoN .Impedanceofironelectrodepassivat edinborateandphosphatesolutions[J].TransactionsoftheJapanInstituteofMetals,1986,27(5):382-392
[19]GaberscekM ,PejovnikS .Impedancespectroscopyasatechniqueforstudyingthespontaneouspassivationofmetalsinelectrolytes[J].Electrochim.Acta,1996,41(7/8):1137-1142
[1] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[3] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[4] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[5] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[6] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[7] ZHAO Baijie, FAN Yi, LI Zhenzhen, ZHANG Bowei, CHENG Xuequn. Crevice Corrosion Behavior of 316L Stainless Steel Paired with Four Different Materials[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[8] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[9] QIN Yueqiang, ZUO Yong, SHEN Miao. Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[10] HE Zhuang,WANG Xingping,LIU Zihan,SHENG Yaoquan,MI Mengxin,CHEN Lin,ZHANG Yan,LI Yuchun. Passivation and Pitting of 316L and HR-2 Stainless Steel in Hydrochloric Acid Liquid Membrane Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[11] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[12] ZHANG Rui,LI Yu,GUAN Lei,WANG Guan,WANG Fuyu. Effect of Heat Treatment on Electrochemical Corrosion Behavior of Selective Laser Melted Ti6Al4V Alloy[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[13] LUO Hong,GAO Shujun,XIAO Kui,DONG Chaofang,LI Xiaogang. Effect of Magnetron Sputtering Process Parameters on CrN Films on 304 Stainless Steel and TheirCorrosion Behavior[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[14] FU Anqing,ZHAO Mifeng,LI Chengzheng,BAI Yan,ZHU Wenjun,MA Lei,XIONG Maoxian,XIE Junfeng,LEI Xiaowei,LV Naixin. Effect of Laser Surface Melting on Microstructure and Performance of Super 13Cr Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(5): 446-452.
[15] SUN Xiaoguang,HAN Xiaohui,ZHANG Xingshuang,ZHANG Zhiyi,LI Gangqing,DONG Chaofang. Corrosion Resistance and Environmentally-friendly Chemical Passivation of Welded Joints for Ultra-low Carbon Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
No Suggested Reading articles found!