Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2014, Vol. 34 Issue (3): 225-230    DOI: 10.11902/1005.4537.2013.127
Current Issue | Archive | Adv Search |
Effects of Alternating Current (AC) Frequency on Corrosion Behavior of X80 Pipeline Steel in a Simulated Acid Soil Solution
ZHU Min, DU Cuiwei(), LI Xiaogang, LIU Zhiyong, WANG Liye
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Download:  HTML  PDF(5817KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of frequency of the applied alternating current (AC) on corrosion behavior of X80 steel in an artificial liquid aiming to simulate the acid soil medium of Yingtan area was studied by means of electrochemical measurement, immersion test and surface characterization technique. The results showed that with the increasing AC frequency, the corrosion rate and the corrosion degree of X80 steel decreased gradually. The corrosion product of X80 steel under the applied AC was loose with many cracks thus could not offer proper protection to the substrate. The offset of corrosion potential of X80 steel decreased as the AC frequency increases. With the increase of AC frequency, the oscillation amplitude of anode and cathode polarization curve gradually receded. In the range of the test frequency, the applied AC to X80 steel not only induced the increase of the current density for both anode and cathode, but also the change of cathode reaction from mixing control to activation control.

Key words:  X80 steel      AC frequency      corrosion behavior      corrosion rate     
Received:  11 July 2013     
ZTFLH:  TG171  

Cite this article: 

ZHU Min, DU Cuiwei, LI Xiaogang, LIU Zhiyong, WANG Liye. Effects of Alternating Current (AC) Frequency on Corrosion Behavior of X80 Pipeline Steel in a Simulated Acid Soil Solution. Journal of Chinese Society for Corrosion and protection, 2014, 34(3): 225-230.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2013.127     OR     https://www.jcscp.org/EN/Y2014/V34/I3/225

Fig.1  

电化学测试用实验装置图

Fig.2  

X80钢的金相组织

Fig.3  

不同交流电频率作用下X80钢去除腐蚀产物后的微观形貌

Fig.4  

不同交流电频率作用下X80钢的腐蚀速率

Fig.5  

不同交流电频率作用下X80钢腐蚀产物形貌和EDS结果

Fig.6  

交流电频率对X80钢腐蚀电位的影响

Fig.7  

腐蚀电位的偏移量与交流电频率的关系曲线

Fig.8  

不同交流电频率作用下X80钢的极化曲线

[1] Wakelin R G, Sheldon C. Investigation and mitigation of AC corrosion on a 300 mm diameter natural gas pipeline [A]. Corrosion/2004[C]. Houston: NACE, 2004
[2] Dong L, Lu M X, Du Y X, et al. Investigation progress of alternating current corrosion on buried pipelines[J]. J. Chin. Soc. Corros. Prot., 2011, 31: 173-178
(董亮, 路民旭, 杜艳霞等. 埋地管道交流腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2011, 31: 173-178)
[3] Roger F. Testing and mitigation of AC corrosion on 8 lines: a field study [A]. Corrosion/2004 [C]. Houston: NACE, 2004
[4] Goidanich S, Lazzari L, Ormellese M. AC Corrosion-Part 2:parameters influencing corrosion rate[J]. Corros. Sci., 2010, 52: 916-922
[5] Fu A Q, Cheng Y F. Effects of alternating current on corrosion of a coated pipeline steel in a chloride-containing carbonate/bicarbonate solution[J]. Corros. Sci., 2010, 52: 612-619
[6] Funk D, Prinz W, Schoneich H G. Investigations of AC corrosion in cathodically protected pipes[J]. 3R Int., 1992, 31: 336-341
[7] Chin D T, Fu T W. Corrosion by alternating current: A study of the anodic polarization of mild steel in Na2SO4 solution[J]. Corrosion, 1979, 35: 514-523
[8] Chin D T, Sachdev P. Corrosion by alternating current: polarization of mild steel in neutral electrolytes[J]. J. Electrochem. Soc., 1983, 130: 1714-1718
[9] Kulman F E. Effects of alternating currents in causing corrosion[J]. Corrosion, 1961, 17: 34-35
[10] Goidanich S, Lazzari L, Ormellese M, et al. Influence of AC on corrosion kinetics for carbon steel, zinc and cop-per [A]. Corrosion/2005 [C]. Houston, Texas: NACE, 2005
[11] Jones D A. Effect of alternating current on corrosion of low alloy and carbon steels[J]. Corrosion, 1978, 34: 428-433
[12] Nielsen L V, Galsgaard F. Sensor technology for on-line monitoring of AC-induced corrosion along pipelines [A]. Corrosion/2005 [C]. Houston, Texas: NACE, 2005
[13] GB/T 16545-1996. Removal of corrosion products from corrosion test specimens of metals and alloysB/T 16545-1996. Removal of corrosion products from corrosion test specimens of metals and alloys[S]
(GB/T 16545-1996. 金属和合金的腐蚀试样上腐蚀产物的清除B/T 16545-1996. 金属和合金的腐蚀试样上腐蚀产物的清除[S])
[14] Fernandes S Z, Mehendale S G, Venkatachalam S. Influence of frequency of alternating current on the electrochemical dissolution of mild steel and nickel[J]. J. Appl. Electrochem., 1980, 10: 649-654
[15] Cao C N. Principles of Electrochemistry of Corrosion[M]. Beijing: Chemistry Industry Press, 2004
(曹楚南. 腐蚀电化学原理[M]. 北京: 化学工业出版社, 2004)
[16] Yang Y, Li Z L, Wen C. Effects of alternating current on X70 steel morphology and electrochemical behavior[J]. Acta Metall. Sin., 2013, 49(1): 43-50
(杨燕, 李自力, 文闯. 交流电对X70钢表面形态及电化学行为的影响[J]. 金属学报, 2013, 49(1): 43-50)
[17] Zhang R, Vairavanathan P R, Lalvani S B. Perturbation method analysis of AC-induced corrosion[J]. Corros. Sci., 2008, 50(6):1664-1671
[1] HUANG Tao, XU Chunxiang, YANG Lijing, LI Fuxia, JIA Qinggong, KUAN Jun, ZHANG Zhengwei, WU Xiaofeng, WANG Zhongqi. Effect of Zr Addition on Microstructure and Corrosion Behavior of Mg-3Zn-1Y Alloys[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[2] GE Pengli, ZENG Wenguang, XIAO Wenwen, GAO Duolong, ZHANG Jiangjiang, LI Fang. Effect of Applied Stress and Medium Flow on Corrosion Behavior of Carbon Steel in H2S/CO2 Coexisting Environment[J]. 中国腐蚀与防护学报, 2021, 41(2): 271-276.
[3] JIA Shichao, GAO Jiaqi, GUO Hao, WANG Chao, CHEN Yangyang, LI Qi, TIAN Yimei. Influence of Water Quality on Corrosion of Cast Iron Pipe in Reclaimed Water[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[4] LI Lin, CHEN Yiqing, GAO Peng, AI Fangfang, ZHONG Bin, SAN Hongyu, YANG Ying. Corrosion Resistance of Various Bridge Steels in Deicing Salt Environments[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[5] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[6] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[7] WANG Xinhua, YANG Yong, CHEN Yingchun, WEI Kailing. Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[8] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[9] SHEN Shuyang, WANG Dongsheng, SUN Shibin, YANG Ti, ZHAO Qianjing, WANG Xin, ZHANG Yafei, CHANG Xueting. Corrosion Behavior in Artificial Seawater of Subzero Treated EH40 Marine Steel Suitable for ExtremelyCold Environments[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[10] SU Xiaohong,HU Huie,KONG Xiaodong. Corrosion Behavior of W Particles/Zr41.2Ti13.8Cu12.5Ni10Be22.5 Metallic Glass Matrix Composite in 3%NaCl Solution[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[11] ZHAO Guoxian,HUANG Jing,XUE Yan. Corrosion Behavior of Materials Used for Surface Gathering and Transportation Pipeline in an Oilfield[J]. 中国腐蚀与防护学报, 2019, 39(6): 557-562.
[12] WANG Qinying,PEI Rui,XI Yuchen. Erosion-corrosion Behavior of Laser-clad Ni-based Alloy Coating on Q235 Carbon Steel[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[13] GUO Tieming,ZHANG Yanwen,QIN Junshan,SONG Zhitao,DONG Jianjun. Corrosion Behavior of Q345q Bridge Steel in Three Simulated Atmospheres[J]. 中国腐蚀与防护学报, 2019, 39(4): 319-330.
[14] Yongwei SUN,Yuping ZHONG,Lingshui WANG,Fangxiong FAN,Yatao CHEN. Corrosion Behavior of Low-alloy High Strength Steels in a Simulated Common SO2-containing Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[15] Li LIU,Sirong YU. Effect of Gd Addition on Corrosion Behavior of AM60 Magnesium Alloy[J]. 中国腐蚀与防护学报, 2019, 39(2): 185-191.
No Suggested Reading articles found!