Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2013, Vol. 33 Issue (4): 271-276    DOI:
Current Issue | Archive | Adv Search |
Effects of Applied Cathodic Potential on Susceptibility to Hydrogen Embrittlement and Mechanical Properties of Q235 Steel
WEN Lijuan, GAO Zhiming, LIU Yangyang, LIN Feng
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite & Functional Material, Tianjin University, Tianjin 300072, China
Download:  PDF(2887KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The hydrogen permeation characteristics of Q235 steel under different applied cathodic protection potential in 3.5%NaCl solution were investigated by using electrochemical, tensile and micro-hardness test. The fracture morphology was observed by scanning electron microscopy (SEM). When the cathodic potential shifted to the negative direction, there was no correlation between maximal tensile strength, yield strength, and hydrogen embrittlement, but the reduction of area decreased. When the polarization potential was -1100 mV, the micro-hardness increased significantly and the fracture morphology exhibited brittle fracture feature.
Key words:  Q235 steel      cathodic protection      EIS      micro-hardness     
ZTFLH:  TG174.41  

Cite this article: 

WEN Lijuan,GAO Zhiming,LIU Yangyang,LIN Feng. Effects of Applied Cathodic Potential on Susceptibility to Hydrogen Embrittlement and Mechanical Properties of Q235 Steel. Journal of Chinese Society for Corrosion and protection, 2013, 33(4): 271-276.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2013/V33/I4/271

[1] Meng C, Qu Z, Pang Q W. Parameters for cathodic protection of 1Cr18Ni9Ti cycling pump in power plant [J]. Corros. Prot., 2004, 25(11): 473-488
(孟超, 曲政, 庞其伟. 1Cr18Ni9Ti海水循环水泵阴极保护参数 [J]. 腐蚀与防护, 2004, 25(11): 473-488)
[2] Akonko S, Li D Y, Ziomek M. Effects of cathodic protection on corrosive wear of 304 stainless steel [J]. Tribol. Lett., 2005, 18(3): 405-410
[3] Eliassen S. New concept for cathodic protection of offshore pipelines to reduce hydrogen induced stress cracking (HISC) in high strength 13%Cr stainless steels [J]. Corros. Eng. Sci. Technol., 2004, 39(1): 31-37
[4] Zucchi F. Hydrogen embrittlement of duplex stainless steel under cathodic protection in acidic artificial sea water in the presence of sulphide ions [J]. Corros. Sci., 2006, 48: 522-530
[5] Wu J X, Fu Z G, Zhang P Q, et al. AC impedance characteristics of low alloy steels under cathodic protection and determination of the optimum protection potential [J]. J. Chin. Soc. Corros. Prot., 1989, 9(6): 160-164
(吴继勋, 傅争光, 张谱强等. 用交流阻抗技术确定船用钢的最佳阴极保护电位 [J]. 中国腐蚀与防护学报, 1989, 9(6): 160-164)
[6] Yang Z Y, Yan Y G, Ma L. Effect of cathodic polarization on the susceptibility to hydrogen embrittlement of 907 steel [J]. Corros. Prot., 2009, 30(10): 701-703
(杨兆艳, 闫永贵, 马力. 阴极极化对907钢氢脆敏感性的影响 [J]. 腐蚀与防护, 2009, 30(10): 701-703)
[7] Zhang G H, Gong M, Tang Q, et al. Electrochemical study on cathodic protection parameters of X80 pipeline steels [J]. Corros. Prot., 2011, 32(11): 868-883
(张国虎, 龚敏, 唐强等. 用电化学方法研究X80 管线钢的阴极保护参数 [J]. 腐蚀与防护, 2011, 32(11): 868-883)
[8] Chang E, Yan Y G, Li Q F, et al. Effects of cathodic polarization on the hydrogen embrittlement sensitivity of 921A steel in sea water[J]. J. Chin. Soc. Corros. Prot., 2010, 30(1):83-87
(嫦娥, 闫永贵, 李庆芬等. 阴极极化对921A钢海水中的氢脆敏感性的影响 [J]. 中国腐蚀与防护学报, 2010, 30(1): 83-87)
[9] Qiu K Y, Wei B M, Fang Y H. The cathodic protection and susceptibility of hydrogen embrittlement of 16Mn steel in 3% NaCl solution [J]. J. Nanjing Inst. Chem. Technol., 1992, 14(2): 8-14
(邱开元, 魏宝明, 方耀华. 16Mn钢在3%氯化钠水溶液中的阴极保护及其氢脆敏感性 [J]. 南京化工学院学报, 1992, 14(2): 8-14)
[10] Jang S, Han M, Kim S. Electrochemical characteristics of stainless steel using impressed current cathodic protection in seawater [J]. Trans. Nonferrous Met. Soc. China, 2009, 19(4): 930-934
[11] Baeckmann W V, Schwenk W, Prinz W. Translated by Hu S X, Wang X N, et al. Handbook of Cathodic Protection [M]. Beijing: Chemical Industry Press, 2005
(Baeckmann W V, Schwenk W, Prinz W著. 胡士信, 王向农等译. 阴极保护手册 [M]. 北京: 化学工业出版社, 2005)
[12] Zheng S Q, Qi Y M, Chen C F, et al. Effect of hydrogen and inclusions on the tensile properties and fracture behavior of A350LF2 steels after exposure to wet H2S environments [J]. Corros. Sci., 2012, 60: 59-68
[13] Li M C, Lin H C, Cao C N. Study on soil erosion of carbon steel by electrochemical impedance spectroscopy [J]. J. Chin. Soc. Corros. Prot., 2000, 20(2): 111-117
(李谋成, 林海潮, 曹楚南. 碳钢在土壤中腐蚀的电化学阻抗谱特征 [J]. 中国腐蚀与防护学报, 2000, 20(2): 111-117)
[14] Cao C N, Zhang J Q. Introduction of Electrochemical Impedance Spectroscope [M]. Beijing: Science Press, 2002
(曹楚南, 张鉴清. 电化学阻抗谱导论[M](第二版). 北京: 科学出版社, 2002)
[15] Xu H B, Wang T Y, Wang Y Z, et al. A laboratory evaluation technology for determination of cathodic protection parameters of 16Mn steel in soil [J]. Corros. Sci. Prot. Technol., 2006, 18(6): 404-409
(徐海波, 王廷勇, 王远志等. 16Mn钢在土壤中的阴极保护参数实验室评价技术研究 [J]. 腐蚀科学与防护技术, 2006, 18(6): 404-409)
[16] Kim S J, Okido M, Moon K M. Electrochemical study of cathodic protection of steel used for marine structures [J]. Korean J. Chem. Eng., 2003, 20(3): 560-56
[1] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[2] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[3] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[4] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[5] LIANG Yi, DU Yanxia. Research Progress on Evaluation Criteria and Mechanism of Corrosion Under Cathodic Protection and AC Interference[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[6] ZHAO Shuyan,TONG Xinhong,LIU Fuchun,WENG Jinyu,HAN En-Hou,LI Xiaohui,YANG Lin. Corrosion Resistance of Three Zinc-rich Epoxy Coatings[J]. 中国腐蚀与防护学报, 2019, 39(6): 563-570.
[7] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[8] Guirong WANG,Yawei SHAO,Yanqiu WANG,Guozhe MENG,Bin LIU. Effect of Applied Cathodic Protection Potential on Cathodic Delamination of Damaged Epoxy Coating[J]. 中国腐蚀与防护学报, 2019, 39(3): 235-244.
[9] Ping QIU, Lianjie YANG, Yu SONG, Hongfei YANG. Influence of DMF Modified TiO2 Film on the Photogenerated Cathodic Protection Behavior[J]. 中国腐蚀与防护学报, 2018, 38(3): 289-295.
[10] Jie ZHANG, Xiuhua HU, Chuanbo ZHENG, Jizhou DUAN, Baorong HOU. Influence of Calcareous Deposit on Corrosion Behavior of Q235 Carbon Steel in Marine Microalgae Containing Medium[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[11] Xiaofei CUI, Xiaoming TAN, De WANG, Ang QIAN. Assessment of Aging Performance of Polyurethane Coating for 7B04 Al-alloy with an Accelerated Testing Spectrum[J]. 中国腐蚀与防护学报, 2018, 38(1): 74-80.
[12] Jia WANG, Mengyang JIA, Zhaohui YANG, Bing HAN. On Completeness of EIS Equivalent Circuit Analysis for Electrochemical Corrosion Process[J]. 中国腐蚀与防护学报, 2017, 37(6): 479-486.
[13] Guangyi CAI,Haowei WANG,Weihang ZHAO,Zehua DONG. Effect of Nano-CeO2 on Anticorrosion Performance for Polyurethane Coating[J]. 中国腐蚀与防护学报, 2017, 37(5): 411-420.
[14] Xinxin ZHANG,Zhiming GAO,Wenbin HU,Zhipeng WU,Lianheng HAN,Lihua LU,Yan XIU,Dahai XIA. Correlation Between Corrosion Behavior and Image Information of Q235 Steel Beneath Thin Electrolyte Film[J]. 中国腐蚀与防护学报, 2017, 37(5): 444-450.
[15] Jie KOU, Xince ZHANG, Gan CUI, Baoan YANG. Research Progress on Cathodic Protection Potential Distribution of Tank Bottom Plate[J]. 中国腐蚀与防护学报, 2017, 37(4): 305-314.
No Suggested Reading articles found!