Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2026, Vol. 46 Issue (1): 115-125    DOI: 10.11902/1005.4537.2025.170
Current Issue | Archive | Adv Search |
Hot Corrosion Behavior of CoCrNi Medium-entropy Alloys Fabricated by Laser Powder Bed Fusion
ZHOU Xiaobao1, WANG Ziteng2, REN Yanjie1,2(), DONG Shaoyang2, GAN Lang2, LI Cong2
1.School of Intelligent Manufacturing and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
2.Department of Energy and Power Engineering, Changsha University of Science and Technology, Changsha 410076, China
Cite this article: 

ZHOU Xiaobao, WANG Ziteng, REN Yanjie, DONG Shaoyang, GAN Lang, LI Cong. Hot Corrosion Behavior of CoCrNi Medium-entropy Alloys Fabricated by Laser Powder Bed Fusion. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 115-125.

Download:  HTML  PDF(17789KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Herein, the corrosion behavior of two CoCrNi medium entropy alloys (MEA) with the same chemical composition, but prepared by laser powder bed fusion (LPBF) and rolling respectively, was comparatively investigated beneath a molten mixed salt film of 50%KCl + 50%Na2SO4 (mass fraction) at 650 oC by means of electrochemical impedance spectroscopy. The results reveal that the LPBF-fabricated alloy exhibits a double capacitive response, whereas the rolled alloy displays a transition from double capacitive characteristics to diffusion-dominated behavior with increasing corrosion time. Microscopic characterization shows that the LPBF-fabricated alloy surface forms a layered multi-product consisting of Co3O4, NiO, Ni3S2 and Cr2O3, while the rolled alloy surface generates only a single Cr2O3, accompanied by severe internal oxidation. The distinct corrosion behavior may be attributed to the influence of grain boundary density and grain boundary distribution characteristics on the metal atom diffusion and corrosive medium permeation, thereby affecting the characteristics of electrochemical impedance spectra and the composition and structure of corrosion product films.

Key words:  hot corrosion      laser powder bed fusion      CoCrNi MEA      electrochemical impedance spectroscopy      microstructure     
Received:  06 June 2025      32134.14.1005.4537.2025.170
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(52171066);National Natural Science Foundation of China(52175129)

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2025.170     OR     https://www.jcscp.org/EN/Y2026/V46/I1/115

Fig.1  Morphology of CoCrNi MEA powder for LPBF (a), particle size distribution (b) and schematic illustration of the scanning strategy (c)
Fig.2  Schematic of electrochemical test system
Fig.3  LPBF CoCrNi MEA at low magnification (a), LPBF CoCrNi MEA at high magnification (b), rolled CoCrNi MEA at low magnification (c) and XRD profiles of LPBF and rolled CoCrNi MEAs (d)
Fig.4  EBSD characterization of LPBF and rolled CoCrNi MEAs: (a1, b1) grain orientation maps and inverse pole figures,(a2, b2) grain boundary misorientation distribution histograms, (a3, b3) Kernel average misorientation (KAM) mappings
Fig.5  Nyquist plots (a) and Bode plots (b) of EIS spectrum of LPBF CoCrNi MEAs under salt film corrosion
Fig.6  Nyquist plots (a) and Bode plots (b) of EIS spectrum of rolled CoCrNi MEAs under salt film corrosion
Fig.7  Equivalent circuits representing the corrosion of LPBF CoCrNi MEAs and rolled CoCrNi MEAs beneath a molten 50%KCl + 50%Na2SO4 film at 650 oC in air: (a) when the alloy is covered with a complete and dense protective salt layer, (b) when the alloy is covered with a loose, porous and uneven protective salt layer, (c) when the alloy is under charge transfer and diffusion control
AlloyTimeRsY0, dlndlRdlY0, dndY0, fnfRf
/ h/ Ω·cm2/ Ω-1·cm-2·s-n/ Ω·cm2/ Ω-1·cm-2·s-n/ Ω-1·cm-2·s-n/ Ω·cm2
LPBF CoCrNi30.9690.6200.6117.864--0.5600.838114.6
101.1280.0630.5590.699--0.2680.609167.3
241.1420.0750.5270.722--0.3080.66963.69
301.1260.0880.5090.817--0.3260.68964.28
481.1850.1060.4790.979--0.3600.70765.82
Rolled CoCrNi31.0590.2370.8003.467--0.1090.715259.7
101.1540.1590.4044.471--0.0980.723244.1
241.1900.1550.4098.789--0.1110.677280.7
300.9730.1000.5292.1270.0950.5601---
480.9980.0800.5140.88530.1310.5054---
Table 1  Fitting parameters for electrochemical impedance spectra of LPBF and rolled CoCrNi MEAs under high temperature salt film corrosion
Fig.8  XRD pattern of LPBF CoCrNi MEA (a) and rolled CoCrNi MEA (b) corrosion in the presence of 50%KCl + 50% Na2SO4 film for 48 h
Fig.9  Cross-section morphologies of LPBF CoCrNi MEA of corrosion in the presence of 50%KCl + 50%Na2SO4 film for 48 h: (a) low magnification, (b) high magnification, (c) element EDS map
Fig.10  Cross-section morphologies of rolled CoCrNi MEA of corrosion in the presence of 50%KCl + 50%Na2SO4 film for 48 h: (a) low magnification, (b) high magnification, (c) element EDS map
Fig.11  Schematic diagram illustrating the corrosion mechanisms of LPBF and rolled CoCrNi MEAs under a 50%KCl-50% Na2SO4 molten salt film
[1] Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, 375-377A: 213
[2] Tsai M H, Yeh J W. High-entropy alloys: A critical review [J]. Mater. Res. Lett., 2014, 2: 107
doi: 10.1080/21663831.2014.912690
[3] Yeh J W. Recent progress in high-entropy alloys [J]. Ann. Chim. Sci. Mater., 2006, 31: 633
doi: 10.3166/acsm.31.633-648
[4] Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
doi: 10.1002/adem.v6:5
[5] Jian W R, Xie Z C, Xu S Z, et al. Effects of lattice distortion and chemical short-range order on the mechanisms of deformation in medium entropy alloy CoCrNi [J]. Acta Mater., 2020, 199: 352
doi: 10.1016/j.actamat.2020.08.044
[6] Laplanche G, Kostka A, Reinhart C, et al. Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi [J]. Acta Mater., 2017, 128: 292
doi: 10.1016/j.actamat.2017.02.036
[7] Gludovatz B, Hohenwarter A, Thurston K V S, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures [J]. Nat. Commun., 2016, 7: 10602
doi: 10.1038/ncomms10602 pmid: 26830651
[8] Agustianingrum M P, Lee U, Park N. High-temperature oxidation behaviour of CoCrNi medium-entropy alloy [J]. Corros. Sci., 2020, 173: 108755
doi: 10.1016/j.corsci.2020.108755
[9] Adomako N K, Kim J H, Hyun Y T. High-temperature oxidation behaviour of low-entropy alloy to medium- and high-entropy alloys [J]. J. Therm. Anal. Calorim., 2018, 133: 13
doi: 10.1007/s10973-018-6963-y
[10] Guo J B, Yang S H, Zhou Z Y, et al. High-temperature oxidation behavior of laser additively manufactured AlCoCrFeNiSi high entropy alloy [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 217
郭静波, 杨守华, 周子翼 等. 激光增材制造AlCoCrFeNiSi高熵合金的氧化行为 [J]. 中国腐蚀与防护学报, 2025, 45: 217
doi: 10.11902/1005.4537.2024.313
[11] Guo S, Ng C, Liu C T. Anomalous solidification microstructures in Co-free Al x CrCuFeNi2 high-entropy alloys [J]. J. Alloy. Compd., 2013, 557: 77
doi: 10.1016/j.jallcom.2013.01.007
[12] Jia Q B, Gu D D. Selective laser melting additive manufactured Inconel 718 superalloy parts: High-temperature oxidation property and its mechanisms [J]. Opt. Laser Technol., 2014, 62: 161
doi: 10.1016/j.optlastec.2014.03.008
[13] Huang W Y, Li Y T, Yanjie R E N, et al. Effect of scanning speed on the high-temperature oxidation resistance and mechanical properties of Inconel 625 alloys fabricated by selective laser melting [J]. Vacuum, 2022, 206: 111447
doi: 10.1016/j.vacuum.2022.111447
[14] Tan J J, Ding P, Lv F C, et al. Reasons and prevention measures for high-temperature corrosion of water-cooled walls in coal-fired boilers [J]. Total Corros. Control, 2024, 38(10): 205
谈金军, 丁 鹏, 吕馥丞 等. 燃煤锅炉水冷壁高温腐蚀形成原因及防治措施 [J]. 全面腐蚀控制, 2024, 38(10): 205
[15] Qu Y M, Yuan W, Xu Y F, et al. Corrosion analysis of high-temperature superheater tubes of a waste incineration boiler [J]. Mater. Prot., 2025, 58(2): 131
doi: 10.5937/ZasMat1702131F
曲炎淼, 袁 玮, 徐云峰 等. 某垃圾焚烧锅炉内高温过热器管腐蚀分析 [J]. 材料保护, 2025, 58(2): 131
[16] Guan Y, Liu G M, Zhang M Q, et al. High temperature corrosion behavior of Sanicro 25 steel in high-sulfur coal ash/simulated flue gas [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 681
官 宇, 刘光明, 张民强 等. Sanicro 25钢在高硫煤灰/模拟烟气中的高温腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 681
[17] Kyogoku H, Ikeshoji T T. A review of metal additive manufacturing technologies: Mechanism of defects formation and simulation of melting and solidification phenomena in laser powder bed fusion process [J]. Mech. Eng. Rev., 2020, 7: 19-00182
[18] Han B L, Zhang C C, Feng K, et al. Additively manufactured high strength and ductility CrCoNi medium entropy alloy with hierarchical microstructure [J]. Mater. Sci. Eng., 2021, 820A: 141545
[19] Liu Y F, Ren J, Guan S, et al. Microstructure and mechanical behavior of additively manufactured CoCrFeMnNi high-entropy alloys: Laser directed energy deposition versus powder bed fusion [J]. Acta Mater., 2023, 250: 118884
doi: 10.1016/j.actamat.2023.118884
[20] Chen F, Wang Q, Zhang C, et al. Microstructures and mechanical behaviors of additive manufactured Inconel 625 alloys via selective laser melting and laser engineered net shaping [J]. J. Alloy. Compd., 2022, 917: 165572
doi: 10.1016/j.jallcom.2022.165572
[21] Ni C S, Lu L Y, Zeng C L, et al. Electrochemical impedance studies of the initial-stage corrosion of 310S stainless steel beneath thin film of molten (0.62Li, 0.38K)2CO3 at 650 oC [J]. Corros. Sci., 2011, 53: 1018
doi: 10.1016/j.corsci.2010.11.036
[22] Encinas-Sánchez V, de Miguel M T, Lasanta M I, et al. Electrochemical impedance spectroscopy (EIS): An efficient technique for monitoring corrosion processes in molten salt environments in CSP applications [J]. Sol. Energy Mater. Sol. Cells, 2019, 191: 157
doi: 10.1016/j.solmat.2018.11.007
[23] Trinstancho-Reyes J L, Sanchez-Carrillo M, Sandoval-Jabalera R, et al. Electrochemical impedance spectroscopy investigation of alloy Inconel 718 in molten salts at high temperature [J]. Int. J. Electrochem. Sci., 2011, 6: 419
doi: 10.1016/S1452-3981(23)15005-X
[24] Li J, Zeng C L. Electrochemical impedance study of (Na, K)2SO4 induced hot corrosion of pure nickel and Ni-based superalloy M38G [J]. Corros. Sci. Prot. Technol., 2005, 17: 50
李 杰, 曾潮流. (Na, K)2SO4沉积引起的纯Ni和M38G合金热腐蚀的电化学阻抗研究 [J]. 腐蚀科学与防护技术, 2005, 17: 50
[25] Zeng C L, Wang W, Wu W T. Corrosion electrochemical-impedance of Fe-Cr alloys in eutectic (Li, K)2CO3 mixture at 650 oC [J]. Corros. Sci. Prot. Technol., 2000, 12: 249
曾潮流, 王 文, 吴维㞵. Fe-Cr合金在650 ℃共晶(Li, K)2CO3熔盐中的腐蚀电化学阻抗谱研究 [J]. 腐蚀科学与防护技术, 2000, 12: 249
[26] Zeng C L, Li J. Electrochemical impedance studies of molten (0.9Na, 0.1K)2SO4-induced hot corrosion of the Ni-based superalloy M38G at 900 oC in air [J]. Electrochim. Acta, 2005, 50: 5533
doi: 10.1016/j.electacta.2005.03.034
[27] Li Y M, Liu H, Qiao Z, et al. Comparison on hot corrosion behaviors of Ni-base superalloy DD5, DD10 and DSM11 [J]. Chin. J. Nonferrous Met., 2020, 30: 2105
李艳明, 刘 欢, 乔 志 等. 镍基高温合金DD5、DD10和DSM11热腐蚀行为比较 [J]. 中国有色金属学报, 2020, 30: 2105
[28] Hong M, Samuha S, Hosemann P. Corrosion mechanism of cold forged 316 stainless steel in molten FLiNaK salt [J]. Corros. Sci., 2024, 232: 111990
doi: 10.1016/j.corsci.2024.111990
[29] Yang T S, Zhang G Q, Dai Z Y, et al. Study of corrosion behavior of Inconel 625 cladding metal in KCl-MgCl2 molten salt under isothermal and thermal cycling conditions [J]. J. Mater. Sci., 2023, 58: 13205
doi: 10.1007/s10853-023-08823-7
[30] Pan C L, Li X Q, Luo H, et al. Thermal oxidation behavior of CoCrNi medium-entropy alloy bond coatings deposited using laser cladding process [J]. Corros. Sci., 2022, 194: 109956
doi: 10.1016/j.corsci.2021.109956
[31] Zhao B, Wang Q L, Ren Y J, et al. Hot corrosion behavior of Inconel 625 alloys fabricated by selective laser melting [J]. Chin. J. Nonferrous Met., 2024, 34: 2030
赵 斌, 王琪霖, 任延杰 等. 激光选区熔化Inconel 625合金的高温热腐蚀行为 [J]. 中国有色金属学报, 2024, 34: 2030
[32] Liu G M, Liu K S, Mao X F, et al. Hot corrosion of T91 steel in molten mixture of KCl + Na2SO4 + K2SO4 [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 23
刘光明, 刘康生, 毛晓飞 等. T91钢在KCl + Na2SO4 + K2SO4熔融盐中的热腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2017, 37: 23
doi: 10.11902/1005.4537.2016.168
[33] Yang Y F, Liu Z L, Ren P, et al. Hot corrosion behavior of Pt + Hf co-modified NiAl coating in the mixed salt of Na2SO4-NaCl at 900 oC  [J]. Corros. Sci., 2020, 167: 108527
doi: 10.1016/j.corsci.2020.108527
[34] Zhang Z W, Li J K, Xu W H, et al. Effects of overlapping process on grain orientation and microstructure of nickel-based single-crystal superalloy DD491 fabricated by selective laser melting [J]. Acta Metall. Sin., 2024, 60: 1471
doi: 10.11900/0412.1961.2023.00230
张振武, 李继康, 许文贺 等. 搭接工艺对选区激光熔化镍基单晶高温合金DD491晶体取向与微观组织的影响 [J]. 金属学报, 2024, 60: 1471
doi: 10.11900/0412.1961.2023.00230
[35] Dong N, Qin W R, Han P D. Theoretical study in adsorption behavior of S and Cl on surface and its effect on corrosion performance of γ-FeM (111) (M = Cr, Ni, Mn, Mo, Cu, Ce) [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1566
董 楠, 秦慰蓉, 韩培德. S、Cl表面吸附及其对γ-FeM(111) (M =Cr、Ni、Mn、Mo、Cu、Ce)腐蚀的理论研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1566
[36] Ghaffari Y, Daub K, Long F, et al. Comparing the intergranular oxidation of Ni-Cr and Ni-Al model alloys in 480 oC hydrogenated steam [J]. Scr. Mater., 2023, 232: 115501
doi: 10.1016/j.scriptamat.2023.115501
[37] Teng Q, Li S, Xue P J, et al. High-temperature corrosion resistance of Inconel 718 fabricated by selective laser melting [J]. Chin. J. Nonferrous Met., 2019, 29: 1417
滕 庆, 李 帅, 薛鹏举 等. 激光选区熔化Inconel 718合金高温腐蚀性能 [J]. 中国有色金属学报, 2019, 29: 1417
[38] Hu B, Zhang H Q, Zhang J, et al. Progress in interfacial thermodynamics and grain boundary complexion diagram [J]. Acta Metall. Sin., 2021, 57: 1199
doi: 10.11900/0412.1961.2021.00036
胡 标, 张华清, 张 金 等. 界面热力学与晶界相图的研究进展 [J]. 金属学报, 2021, 57: 1199
[39] Xiao Z G, Huang Y, Liu Z X, et al. The role of grain boundaries in the corrosion process of Fe surface: Insights from ReaxFF molecular dynamic simulations [J]. Metals, 2022, 12: 876
doi: 10.3390/met12050876
[1] DAI Nianwei, DOU Xinyi, LIU Huajian, LENG Bin. Research Progress on Corrosion of Additively Manufactured Alloys Applied in Nuclear Energy Field[J]. 中国腐蚀与防护学报, 2026, 46(1): 15-24.
[2] ZHOU Li, CAO Xiaodie, LAI Youbin, DING Wangwang, WEI Boxin, WU Jiajun. Research Progress in Influence of Heat Treatment on Corrosion Behavior of Additive Manufactured Parts[J]. 中国腐蚀与防护学报, 2026, 46(1): 37-48.
[3] SU Baoxian, GAO Ruxin, ZHU Guoqiang, JIANG Botao, WANG Binbin, LIU Chen, YU Yongsheng, WANG Liang, SU Yanqing. Effects of Post Heat Treatment on Microstructure and Corrosion Behavior of Ti-6Al-3Nb-2Zr-1Mo Alloy Fabricated by Electron Beam Freeform Fabrication[J]. 中国腐蚀与防护学报, 2026, 46(1): 81-91.
[4] ZHANG Zequn, LUO Xinjie, LIU Pengfei, DONG Kai, ZHUO Xianqin, WU Junsheng, ZHANG Bowei. Influence of TiC Particles on Microstructure and Corrosion Performance of Laser Powder Bed Fusion Al-Mg-Sc-Zr Alloy[J]. 中国腐蚀与防护学报, 2026, 46(1): 92-102.
[5] JI Lei, ZHANG Zhen, WANG Liqing, LI Yunlong, MA Kai, ZHAO Zhanyong, BAI Peikang. Influence of Construction Angle and Supporter on Corrosion Behavior of AlSi10Mg Alloy Prepared by Laser Additive Manufacturing[J]. 中国腐蚀与防护学报, 2026, 46(1): 145-154.
[6] YANG Xiaowen, CHEN Zehao, YANG Shasha, WANG Qunchang, WANG Jinlong, CHEN Minghui, WANG Fuhui. Short-term Hot Corrosion Behavior of Nickel-based Single Crystal Superalloy N5 and its Nanocrystalline Coating[J]. 中国腐蚀与防护学报, 2026, 46(1): 252-260.
[7] ZHUANG Ning, ZENG Yi, OUYANG Zhengping, XU Jinrong, LI Hanze, SONG Xiaokun, WANG Yazhou. Analysis of Corrosion and Cathodic Protection Characteristics of Reinforced Concrete Pile in Simulated Marine Environments[J]. 中国腐蚀与防护学报, 2026, 46(1): 273-282.
[8] YE Jun, LUO Xin, ZHEN Xiansheng, LI Xinping, XIE Yun, PENG Xiao. Corrosion Behavior of Inconel 718 Alloy Without and with a Pre-deposits Film of Salts Mixture at 750 oC in Different Atmospheres[J]. 中国腐蚀与防护学报, 2025, 45(6): 1528-1536.
[9] WANG De, ZHANG Fan, WANG Xingqi, ZHANG Hexin, ZHAO Chengzhi, YANG Yange. Long-term Corrosion Resistance of Carbon Steel and Al-alloy with Single Component Fluorocarbon Modified Epoxy Coating[J]. 中国腐蚀与防护学报, 2025, 45(6): 1549-1562.
[10] PENG Wang, CHEN Jian, YANG Lingxu, LIU Huijun, LIANG Jianping, ZENG Chaoliu. Effect of NaCl on Hot Corrosion Behavior of 347H Stainless Steel and Ni-based GH3539 Alloy in Molten Nitrate Salts[J]. 中国腐蚀与防护学报, 2025, 45(6): 1610-1618.
[11] BAI Yingxiong, WANG Yanli, LI Xiangwei, WU Zefeng, ZHANG Shuyan. Effect of Heat Treatment on Hot Corrosion Behavior of Selective Laser Melted GH4099 Nickel-based Superalloy Beneath (75%Na2SO4 + 25%NaCl) Deposits in Air at 900 oC[J]. 中国腐蚀与防护学报, 2025, 45(6): 1709-1716.
[12] TONG Xiangyu, XU Weichen, WANG Xiutong, WANG Youqiang, DUAN Jizhou. Summary on Effect of Weling Techniques on Microstructure and Mechanical Properties of TC4 Ti-alloy Weld Joints[J]. 中国腐蚀与防护学报, 2025, 45(5): 1161-1174.
[13] XIA Da-Hai, PAN Chengcheng, GUO Yujie, HU Wenbin, TRIBOLLET Bernard. Electrochemical Impedance Spectroscopy Analysis on Interface State and Corrosion Mechanism of 7050 Al-alloy Subjected to Cavitation Erosion in NaCl Solution[J]. 中国腐蚀与防护学报, 2025, 45(5): 1196-1204.
[14] LIU Penghe, XUE Lili, XU Likun, XIN Yonglei, GUO Mingshuai, ZHOU Shuai, DUAN Tigang. Effect of Hydrogen Pre-charging for Ti-substrate on Microstructure and Electrochemical Properties of Ti/RuO2-IrO2-TiO2 Anode[J]. 中国腐蚀与防护学报, 2025, 45(5): 1277-1288.
[15] ZHAO Xinyu, LIU Enze, ZHANG Gong, ZHAO Yuan, NING Likui, XIN Xin, JIA Dan, LIU Weihua, TAN Zheng. Hot Corrosion Behavior of Brazed Joints of Single Crystal Ni-based DD10 Alloy Beneath Na2SO4 Deposit in Air at 850 and 900 ℃[J]. 中国腐蚀与防护学报, 2025, 45(5): 1361-1370.
No Suggested Reading articles found!