Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (6): 1709-1716    DOI: 10.11902/1005.4537.2025.028
Current Issue | Archive | Adv Search |
Effect of Heat Treatment on Hot Corrosion Behavior of Selective Laser Melted GH4099 Nickel-based Superalloy Beneath (75%Na2SO4 + 25%NaCl) Deposits in Air at 900 oC
BAI Yingxiong1, WANG Yanli1(), LI Xiangwei2, WU Zefeng2, ZHANG Shuyan2
1 School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
2 Centre of Excellence for Advanced Materials, Dongguan 523808, China
Cite this article: 

BAI Yingxiong, WANG Yanli, LI Xiangwei, WU Zefeng, ZHANG Shuyan. Effect of Heat Treatment on Hot Corrosion Behavior of Selective Laser Melted GH4099 Nickel-based Superalloy Beneath (75%Na2SO4 + 25%NaCl) Deposits in Air at 900 oC. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1709-1716.

Download:  HTML  PDF(20838KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Bulk GH4099 alloy was fabricated through a specific SLM process, then subjected to appropriate heat treatment. The hot corrosion behavior of the prepared bulk GH4099 alloys with and without heat treatment was comparatively assessed beneath a thin deposits of 75%Na2SO4 + 25%NaCl in air at 900 oC by means of electronic analytical balance, optical microscopy (OM), X-ray diffractometer (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectrometry (EDS) etc. The results reveal that the micron-sized cellular sub-grains and MC carbides are detected in the SLM alloy. After heat treatment, the grains grow and new phases precipitate. The corrosion kinetics analysis indicates that the bare and heat treated SLM alloys experience more or less the same weight loss in the initial stage, and in the later stage, the two SLM alloys all show obvious corrosion. The corrosion products are divided into four layers, and the hot corrosion process follows an acid dissolution mechanism. The heat-treated alloy has better hot corrosion resistance due to the formation of M23C6 and γ′ phases.

Key words:  selective laser melting      heat treatment      nickel-based superalloy      hot corrosion     
Received:  15 January 2025      32134.14.1005.4537.2025.028
ZTFLH:  TG174  
Fund: Guangdong Major Project of Basic and Applied Basic Research(2020B0301030001)
Corresponding Authors:  WANG Yanli, E-mail: wyl187358@gxu.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2025.028     OR     https://www.jcscp.org/EN/Y2025/V45/I6/1709

Fig.1  Microstructures of SLM GH4099 (a, b) and HT GH4099 (c, d)
Fig.2  TEM images and EDS element mappings of SLM GH4099 (a) and HT GH4099 (b)
Fig.3  Mass change curves of SLM GH4099 and HT GH4099 during hot corrosion in 75%Na2SO4 + 25%NaCl mixed salt deposit at 900 oC for 120 h
Fig.4  XRD patterns of SLM GH4099 and HT GH4099 after hot corrosion for 0 h (a), 60 h (b) and 120 h (c)
Fig.5  Surface morphologies of SLM GH4099 (a, c, e) and HT GH4099 (b, d, f) after hot corrosion at 900 oC for 60 h
PositionOAlTiCrCoNiMoW
A13.4614.050.368.494.6448.923.846.24
B34.518.276.2933.742.7113.850.140.50
C44.590.2647.614.050.241.690.051.50
D3.730.092.656.3074.706.126.413.73
E15.030.090.058.033.9172.500.000.39
F26.460.120.1144.2117.3411.620.000.14
Table 1  EDS determined compositions of the marked points in Fig.5
Fig.6  Surface morphologies of SLM GH4099 (a, c, e) and HT GH4099 (b, d, f) after hot corrosion at 900 oC for 120 h
Fig.7  Cross-sectional morphology (a) and EDS element mappings of Ni (b), Cr (c), Co (d), S (e), W (f), Mo (g), Al (h), O (i) and Ti (j) of SLM GH4099 after 120 h hot corrosion
Fig.8  Cross-sectional morphologies of SLM GH4099 (a) and HT GH4099 (b) after 120 h hot corrosion
Fig.9  Cross-sectional morphology (a) and EDS element mappings of Ni (b), Cr (c), Co (d), S (e), W (f), Mo (g), Al (h), O (i) and Ti (j) of HT GH4099 after 120 h hot corrosion
[1] Li R Z, Cao Z K, Yu C L, et al. Study on microstructure and properties of GH4099 superalloy solution aging treatment [J]. Sichuan Metall., 2021, 43(3): 25
(李荣之, 曹征宽, 余朝龙 等. GH4099高温合金固溶时效组织与性能研究 [J]. 四川冶金, 2021, 43(3): 25)
[2] Tan C L, Weng F, Sui S, et al. Progress and perspectives in laser additive manufacturing of key aeroengine materials [J]. Int. J. Mach. Tools Manuf., 2021, 170: 103804
[3] Yang Y Q, Jiang R W, Han C J, et al. Frontiers in laser additive manufacturing technology [J]. Addit. Manuf. Front., 2024, 3: 200160
[4] Khanna N, Zadafiya K, Patel T, et al. Review on machining of additively manufactured nickel and titanium alloys [J]. J. Mater. Res. Technol., 2021, 15: 3192
[5] Zheng W P, Zhu Y M, Zhang Y, et al. Research on heat treatment of nickel-based superalloys by laser powder bed fusion: A review [J]. J. Alloy. Compd., 2025, 1010: 177522
[6] Volpato G M, Tetzlaff U, Fredel M C. A comprehensive literature review on laser powder bed fusion of Inconel superalloys [J]. Addit. Manuf., 2022, 55: 102871
[7] Zhang K Q, Chen C Y, Xu S Z, et al. On the microstructure evolution and strengthening mechanism of GH4099 Ni-based superalloy fabricated by laser powder bed fusion [J]. Mater. Today Commun., 2024, 40: 109734
[8] Li F, Lu Q, She Y D. Forming process and microstructure and properties of selective laser melted GH4099 superalloy [J]. Trans. Mater. Heat Treat., 2021, 42(9): 98
(李 范, 卢 强, 佘亚东. 激光选区熔化GH4099高温合金成形工艺及组织性能 [J]. 材料热处理学报, 2021, 42(9): 98)
[9] Zhang X Y, Wang S Y, Liu H, et al. Microstructure evolution and mechanical properties of additively manufactured Ni-based GH4099 superalloy via hot isostatic pressing and heat treatment [J]. Mater. Sci. Eng., 2024, 903A: 146696
[10] Lu X F, Chen C, Zhang G H, et al. Thermo-mechanical simulation of annealing heat treatment of Ni-based GH4099 superalloy made by laser powder bed fusion [J]. Addit. Manuf., 2023, 73: 103703
[11] Hu Y, Kang W J, Zhang H Y, et al. Hot corrosion behavior of IN738LC alloy formed by selective laser melting [J]. Corros. Sci., 2022, 198: 110154
[12] Luo K Y, Li S H, Xu G, et al. Hot corrosion behaviors of directed energy deposited Inconel 718/Haynes 25 functionally graded material at 700 oC and 900 oC [J]. Corros. Sci., 2022, 197: 110040
[13] Lv Y T, Liu Y J, Zhang Q, et al. Hot corrosion behavior of a novel TiC/GTD222 nickel-based composite prepared by selective laser melting [J]. Mater. Charact., 2023, 205: 113245
[14] Chang K. Study on microstructure and mechanical properties of GH4099 superalloy by selective laser melting [D]. Dalian: Dalian University of Technology, 2022
(常 凯. 选区激光熔化GH4099高温合金显微组织与力学性能的研究 [D]. 大连: 大连理工大学, 2022)
[15] Zhao Y N, Guo Q Y, Liu C X, et al. Effects of subsequent heat treatment on microstructure and high-temperature mechanical properties of laser 3D printed GH4099 alloy [J]. Acta Metall. Sin., 2025, 61: 165
(赵亚楠, 郭乾应, 刘晨曦 等. 后续热处理对激光3D打印GH4099合金微观组织和高温力学性能的影响 [J]. 金属学报, 2025, 61: 165)
[16] Zhang X Y, Liang Y F, Yi F, et al. Anisotropy in microstructure and mechanical properties of additively manufactured Ni-based GH4099 alloy [J]. J. Mater. Res. Technol., 2023, 26: 6552
[17] Chang K, Tan Y, Ma L, et al. A nickel-base superalloy with refined microstructures and excellent mechanical properties prepared by selective laser melting [J]. Mater. Lett., 2022, 324: 132700
[18] Park J U, Jun S Y, Lee B H, et al. Alloy design of Ni-based superalloy with high γ′ volume fraction suitable for additive manufacturing and its deformation behavior [J]. Addit. Manuf., 2022, 52: 102680
[19] Zhang J L, Fu G Y, Ning L K, et al. Hot corrosion behavior of a nickel based single crystal high temperature alloy subjected to different heat treatments [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1625
(张金龙, 付广艳, 宁礼奎 等. 两种热处理状态的镍基单晶高温合金在900 ℃下(Na2SO4 + NaCl)混合盐中热腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1625)
[20] Shen J B, Cui Y, Liu L, et al. Cyclic hot corrosion behavior of DZ40M and K452 superalloys beneath molten deposit NaCl [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 280
(申聚宝, 崔 宇, 刘 莉 等. DZ40M和K452高温合金在NaCl熔盐中的循环热腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 280)
[1] YE Jun, LUO Xin, ZHEN Xiansheng, LI Xinping, XIE Yun, PENG Xiao. Corrosion Behavior of Inconel 718 Alloy Without and with a Pre-deposits Film of Salts Mixture at 750 oC in Different Atmospheres[J]. 中国腐蚀与防护学报, 2025, 45(6): 1528-1536.
[2] PENG Wang, CHEN Jian, YANG Lingxu, LIU Huijun, LIANG Jianping, ZENG Chaoliu. Effect of NaCl on Hot Corrosion Behavior of 347H Stainless Steel and Ni-based GH3539 Alloy in Molten Nitrate Salts[J]. 中国腐蚀与防护学报, 2025, 45(6): 1610-1618.
[3] ZHAO Xinyu, LIU Enze, ZHANG Gong, ZHAO Yuan, NING Likui, XIN Xin, JIA Dan, LIU Weihua, TAN Zheng. Hot Corrosion Behavior of Brazed Joints of Single Crystal Ni-based DD10 Alloy Beneath Na2SO4 Deposit in Air at 850 and 900 ℃[J]. 中国腐蚀与防护学报, 2025, 45(5): 1361-1370.
[4] ZHANG Yongkang, ZHAI Haimin, LI Xuqiang, LI Wensheng. Hot Corrosion Behavior of Fe-based Amorphous Coatings in Mixed Salts of Na2SO4 + K2SO4 and Na2SO4 + NaCl[J]. 中国腐蚀与防护学报, 2025, 45(1): 92-102.
[5] HUANG Qinying, LI Yuzhuo, YANG Yingfei, REN Pan, WANG Qiwei. Hot Corrosion Behavior of Pt Modified AlCoCrFeNi2.1 Eutectic High Entropy Alloy[J]. 中国腐蚀与防护学报, 2025, 45(1): 115-126.
[6] WANG Yue, GENG Shujiang, WANG Jinlong, WANG Fuhui, SUN Qingyun, WU Yong, XIA Siyao. Corrosion Resistance of CVD Aluminized Coating on K444 Alloy Beneath a Thin Deposits of 95%Na2SO4 + 5%NaCl at High Temperature[J]. 中国腐蚀与防护学报, 2025, 45(1): 127-136.
[7] ZHAO Lijia, CUI Xinyu, WANG Jiqiang, XIONG Tianying. Corrosion Behavior of Cold-sprayed B4C/Al Composite Coating in Boric Acid Solution[J]. 中国腐蚀与防护学报, 2025, 45(1): 164-172.
[8] LIANG Yuwei, WANG Jie, SONG Peng, HUANG Taihong, BAO Yuxu. Wear and Corrosion Resistance of FeCrMoSiB Amorphous Coating[J]. 中国腐蚀与防护学报, 2025, 45(1): 191-200.
[9] YU Zheng, CHEN Minghui, WANG Jinlong, YANG Shasha, WANG Fuhui. Influence of Alkali Metal Sulfate- and Chloride-salts Content in Artificial Coal Ash on Corrosion Behavior of HR3C Steels With and Without Aluminizing[J]. 中国腐蚀与防护学报, 2024, 44(6): 1389-1398.
[10] YI Shuo, ZHOU Shengxuan, YE Peng, DU Xiaojie, XU Zhenlin, HE Yizhu. Microstructure and Corrosion Resistance of Cu-containing Fe-Mn-Cr-Ni Medium-entropy Alloy Prepared by Selective Laser Melting[J]. 中国腐蚀与防护学报, 2024, 44(6): 1589-1600.
[11] ZHANG Jinlong, FU Guangyan, NING Likui, LIU Enze, TAN Zheng, TONG Jian, ZHENG Zhi. Hot Corrosion Behavior of a Nickel Based Single Crystal High Temperature Alloy Subjected to Different Heat Treatments[J]. 中国腐蚀与防护学报, 2024, 44(6): 1625-1632.
[12] HU Qi, GENG Shujiang, WANG Jinlong, WANG Fuhui, SUN Qingyun, WU Yong, XIA Siyao. Hot Corrosion Behavior of Inconel 718 Without and With Aluminide Coating in Air Beneath a Thin Film of Salt Mixture of Na2SO4 + 5%NaCl[J]. 中国腐蚀与防护学报, 2024, 44(3): 623-634.
[13] JIANG Guangrui, LIU Guanghui, SHANG Ting. Effect of Heat Treatment Process on Microstructure and Corrosion Resistance of ZnAlMg Coating[J]. 中国腐蚀与防护学报, 2024, 44(1): 246-254.
[14] XIE Yun, LIU Ting, WANG Wen, ZHOU Jialin, TANG Song. Effect of Microstructure on Corrosion Resistance of a High-strength Ultralightweight Mg-Li Alloy[J]. 中国腐蚀与防护学报, 2024, 44(1): 255-260.
[15] SHANG Qiang, MAN Cheng, PANG Kun, CUI Zhongyu, DONG Chaofang, CUI Hongzhi. Mechanism of Post-heat Treatment on Intergranular Corrosion Behavior of SLM-316L Stainless Steel with Different Carbon Contents[J]. 中国腐蚀与防护学报, 2023, 43(6): 1273-1283.
No Suggested Reading articles found!