Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2026, Vol. 46 Issue (1): 252-260    DOI: 10.11902/1005.4537.2025.104
Current Issue | Archive | Adv Search |
Short-term Hot Corrosion Behavior of Nickel-based Single Crystal Superalloy N5 and its Nanocrystalline Coating
YANG Xiaowen, CHEN Zehao, YANG Shasha, WANG Qunchang, WANG Jinlong(), CHEN Minghui, WANG Fuhui
State Key Laboratory of Digital Steel, Northeastern University, Shenyang 110819, China
Cite this article: 

YANG Xiaowen, CHEN Zehao, YANG Shasha, WANG Qunchang, WANG Jinlong, CHEN Minghui, WANG Fuhui. Short-term Hot Corrosion Behavior of Nickel-based Single Crystal Superalloy N5 and its Nanocrystalline Coating. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 252-260.

Download:  HTML  PDF(19618KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The nanocrystalline coatings of Ni-based single crystal superalloy N5 with and without addition of 0.5%(mass fraction) Y were prepared on the superalloy N5 by magnetron sputtering technology, and then their short-term hot corrosion behavior was studied beneath deposit films of 75%Na2SO4 + 25% K2SO4 at 850 oC, and 75%Na2SO4 + 25%NaCl (in mass fraction) at 900 oC in air. The results showed that the bare N5 exhibited poor corrosion resistance. Although, the N5 alloy with nanocrystalline coatings showed excellent corrosion resistance to the mixed salts, but, the enhanced corrosion resistance to the NaCl containing salts was not obvious for the N5 nanocrystalline coating and the Y-modified ones. Besides, scale spallation and internal corrosion occurred for the coatings after 5 h corrosion test. The corrosion resistance of nanocrystalline coatings can be significantly improved by proper pre-oxidation at 1000 oC for 20 h, the pre-formed oxide scale was able to suppress the attack of the molten salts to certain extent and thus delay the corrosion.

Key words:  superalloy      nanocrystalline coating      hot corrosion      pre-oxidation      corrosion behavior     
Received:  30 March 2025      32134.14.1005.4537.2025.104
ZTFLH:  TG174  

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2025.104     OR     https://www.jcscp.org/EN/Y2026/V46/I1/252

Fig.1  Fracture morphology (a), cross-sectional SEM image (b), cross-sectional TEM image (c) and phase constituents of the as-deposited sputtered nanocrystalline (SN) coating (d)
AreasCoCrAlTaWMoReNi
18.17.96.66.34.81.52.8Bal.
27.37.26.25.34.91.63.2Bal.
Table 1  WDS results of the areas marked by blue numbers in Fig.1b
Fig.2  Kinetic curves of N5 alloy and nanocrystalline coating after hot corrosion in molten mixed sulfates
Fig.3  XRD patterns of N5 alloy and SN coating after hot corrosion in molten mixed sulfates
Fig.4  Surface morphologies of N5 alloy (a, b) and SN coating (c, d) after hot corrosion in molten mixed sulfates and corresponding EDS results
Fig.5  Cross-sectional morphologies and corresponding EDS line scanning results of N5 alloy (a, c, e) and SN coating (b, d, f) after hot corrosion in molten mixed sulfates
Fig.6  XRD patterns of N5 alloy and SN coatings after hot corrosion for 5 h
Fig.7  Micro morphologies of N5 alloy (a, b) and SN coating (c, d) after hot corrosion for 5 h
PointsNiCoCrAlTaNaOthers
147.96.71.50.70.30.2Bal.
215.92.82.933.8--Bal.
319.92.91.931.00.32.2Bal.
41.10.42.337.10.60.4Bal.
538.75.50.85.60.10.1Bal.
Table 2  EDS results of the points marked in Fig.7 and 11
Fig.8  Cross-sectional morphologies of Y-modified na-nocrystalline coating after preoxidation at 1000 oC for 1 (a) and 20 h (b)
Fig.9  Macrographs of SNY coatings after hot corrosion for 5 h (a) and 20 h (b, c) with preoxidation 1 (b) and 20 h (c)
Fig.10  XRD patterns of SNY coatings after hot corrosion
Fig.11  Hot corrosion micro morphologies of SNY (a, b), preoxidation for 1 h (c, d) and preoxidation for 20 h (e, f)
[1] Eliaz N, Shemesh G, Latanision R M. Hot corrosion in gas turbine components [J]. Eng. Fail. Anal., 2002, 9: 31
doi: 10.1016/S1350-6307(00)00035-2
[2] Hu S S, Finklea H, Liu X B. A review on molten sulfate salts induced hot corrosion [J]. J. Mater. Sci. Technol., 2021, 90: 243
doi: 10.1016/j.jmst.2021.03.013
[3] Zhang J L, Fu G Y, Ning L K, et al. Hot corrosion behavior of a nickel based single crystal high temperature alloy subjected to different heat treatments [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1625
张金龙, 付广艳, 宁礼奎 等. 两种热处理状态的镍基单晶高温合金在900 ℃下(Na2SO4 + NaCl)混合盐中热腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1625
doi: 10.11902/1005.4537.2024.027
[4] Shang J, Gu Y, Zhao J, et al. Corrosion behavior in molten salts at 850 oC and its effect on mechanical properties of Hastelloy X alloy fabricated by additive manufacturing [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 671
尚 进, 古 岩, 赵 京 等. 增材制造Hastelloy X合金在850 ℃混合硫酸盐中热腐蚀行为及其对力学性能的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 671
[5] Montero X, Ishida A, Meißner T M, et al. Effect of surface treatment and crystal orientation on hot corrosion of a Ni-based single-crystal superalloy [J]. Corros. Sci., 2020, 166: 108472
doi: 10.1016/j.corsci.2020.108472
[6] Song P, Liu M F, Jiang X W, et al. Influence of alloying elements on hot corrosion resistance of nickel-based single crystal superalloys coated with Na2SO4 salt at 900 oC [J]. Mater. Des., 2021, 197: 109197
doi: 10.1016/j.matdes.2020.109197
[7] Gurrappa I. Hot corrosion behavior of CM 247 LC alloy in Na2SO4 and NaCl environments [J]. Oxid. Met., 1999, 51: 353
doi: 10.1023/A:1018831025272
[8] Cui T C, Leng W C, Zhou D P, et al. Improved hot corrosion resistance of Al-gradient NiSiAlY coatings at 750 oC by pre-oxidation [J]. Surf. Coat. Technol., 2021, 417: 127187
doi: 10.1016/j.surfcoat.2021.127187
[9] Sun Y, Li Z B, Ma L W, et al. Research progress on corrosion failure of high-temperature coatings in aero-engines [J]. Therm. Spray Technol., 2024, 16(2): 1
doi: 10.1007/s11666-007-9016-9
孙 毅, 李宗宝, 马菱薇 等. 航空发动机高温涂层腐蚀失效研究进展 [J]. 热喷涂技术, 2024, 16(2): 1
[10] Wang K, Zou L X, Guo L, et al. High-temperature corrosion and protection of thermal barrier coatings for aeroengines and gas turbines [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 1
王 昆, 邹兰欣, 郭 磊 等. 航空发动机及燃气轮机热障涂层高温腐蚀与防护 [J]. 中国腐蚀与防护学报, 2025, 45: 1
[11] Li F G, Yang L, Zhou Y C. Study advances of high temperature coating for aeroengine to resist marine atmospheric corrosion [J]. Therm. Spray Technol., 2019, 11(4): 1
李发国, 杨 丽, 周益春. 航空发动机高温涂层耐海洋大气腐蚀研究进展 [J]. 热喷涂技术, 2019, 11(4): 1
[12] Fu Q F, Yang X L, Liu K M. Current status of research and prospect of high temperature materials for aeroengine [J]. Heat Treat. Technol. Equip., 2018, 39(3): 69
付青峰, 杨细莲, 刘克明. 航空发动机高温材料的研究现状及展望 [J]. 热处理技术与装备, 2018, 39(3): 69
[13] Li M, Cheng Y X. Progress in research on high temperature protective coatings for aero-engines [J]. Chin. Surf. Eng., 2012, 25(1): 16
李 民, 程玉贤. 航空发动机用高温防护涂层研究进展 [J]. 中国表面工程, 2012, 25(1): 16
[14] Zhang L D, Long X Q. High-temperature oxidative corrosion and prevention of aeroengine [J]. Total Corros. Control, 2002, 16(3): 3
张良栋, 隆小庆. 航空发动机高温氧化腐蚀与保护 [J]. 全面腐蚀控制, 2002, 16(3): 3
[15] Lou H Y, Wang F H, Xia B J, et al. High-temperature oxidation resistance of sputtered micro-grain superalloy K38G [J]. Oxid. Met., 1992, 38: 299
doi: 10.1007/BF00666917
[16] Lou H Y, Tang Y J, Sun X F, et al. Oxidation behavior of sputtered microcrystalline coating of superalloy K17F at high temperature [J]. Mater. Sci. Eng., 1996, 207A: 121
[17] Shi L, Xin L, Wang F H, et al. Oxidation behavior of sputtered DD98M nanocrystalline coating at 1000 oC [J]. Oxid. Met., 2016, 86: 263
doi: 10.1007/s11085-016-9635-y
[18] Chen G, Lou H. Oxidation behavior of sputtered Ni-Cr-Al-Ti nanocrystalline coating [J]. Surf. Coat. Technol., 2000, 123: 92
doi: 10.1016/S0257-8972(99)00470-3
[19] Wang J L, Chen M H, Zhu S L, et al. Ta effect on oxidation of a nickel-based single-crystal superalloy and its sputtered nanocrystalline coating at 900-1100 oC [J]. Appl. Surf. Sci., 2015, 345: 194
doi: 10.1016/j.apsusc.2015.03.157
[20] Wang J L, Chen M H, Yang L L, et al. Nanocrystalline coatings on superalloys against high temperature oxidation: A review [J]. Corros. Commun., 2021, 1: 58
[21] Simons E L, Browning G V, Liebhafsky H A. Sodium sulfate in gas turbines [J]. Corrosion, 1955, 11: 17
[22] Stringer J. High-temperature corrosion of superalloys [J]. Mater. Sci. Technol., 1987, 3: 482
doi: 10.1080/02670836.1987.11782259
[23] Geng S, Wang F, Zhu S, et al. Hot-corrosion resistance of a sputtered K38G nanocrystalline coating in molten sulfate at 900 oC [J]. Oxid. Met., 2002, 57: 549
doi: 10.1023/A:1015356522798
[24] Wang H Y, Zuo D W, Chen G, et al. Hot corrosion behaviour of low Al NiCoCrAlY cladded coatings reinforced by nano-particles on a Ni-base super alloy [J]. Corros. Sci., 2010, 52: 3561
doi: 10.1016/j.corsci.2010.07.011
[25] Singh H, Puri D, Prakash S, et al. Hot corrosion of a plasma sprayed Ni3Al coating on a Ni‐base superalloy [J]. Mater. Corros., 2007, 58: 857
[26] Yang L L, Chen M H, Wang J L, et al. Diffusion of Ta and its influence on oxidation behavior of nanocrystalline coatings with different Ta, Y and Al contents [J]. Corros. Sci., 2017, 126: 344
doi: 10.1016/j.corsci.2017.07.017
[27] Chen L C, Zhang C, Yang Z G. Effect of pre-oxidation on the hot corrosion of CoNiCrAlYRe alloy [J]. Corros. Sci., 2011, 53: 374
doi: 10.1016/j.corsci.2010.09.045
[28] Wang L, Liu C Y, Han Z Y, et al. Hot corrosion behavior and evaluation of turbine components and materials used for gas turbine engine [J]. J. Chin. Soc. Corros. Prot., 2011, 31: 399
王 理, 刘春阳, 韩振宇 等. 燃气轮机涡轮零部件及材料热腐蚀行为与评价方法研究 [J]. 中国腐蚀与防护学报, 2011, 31: 399
[29] Wu D L, Zhang H Y, Wei H, et al. Hot corrosion behavior of four modified aluminide coatings on DZ38G alloy [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 502
吴多利, 张洪宇, 韦 华 等. 4种改性的铝化物涂层对DZ38G合金热腐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2014, 34: 502
doi: 10.11902/1005.4537.2013.232
[30] Gesmundo F, Viani F, Niu Y, et al. The transition from the formation of mixed scales to the selective oxidation of the most-reactive component in the corrosion of single and two-phase binary alloys [J]. Oxid. Met., 1993, 40: 373
doi: 10.1007/BF00664498
[1] DAI Nianwei, DOU Xinyi, LIU Huajian, LENG Bin. Research Progress on Corrosion of Additively Manufactured Alloys Applied in Nuclear Energy Field[J]. 中国腐蚀与防护学报, 2026, 46(1): 15-24.
[2] SU Baoxian, GAO Ruxin, ZHU Guoqiang, JIANG Botao, WANG Binbin, LIU Chen, YU Yongsheng, WANG Liang, SU Yanqing. Effects of Post Heat Treatment on Microstructure and Corrosion Behavior of Ti-6Al-3Nb-2Zr-1Mo Alloy Fabricated by Electron Beam Freeform Fabrication[J]. 中国腐蚀与防护学报, 2026, 46(1): 81-91.
[3] ZHOU Xiaobao, WANG Ziteng, REN Yanjie, DONG Shaoyang, GAN Lang, LI Cong. Hot Corrosion Behavior of CoCrNi Medium-entropy Alloys Fabricated by Laser Powder Bed Fusion[J]. 中国腐蚀与防护学报, 2026, 46(1): 115-125.
[4] YE Jun, LUO Xin, ZHEN Xiansheng, LI Xinping, XIE Yun, PENG Xiao. Corrosion Behavior of Inconel 718 Alloy Without and with a Pre-deposits Film of Salts Mixture at 750 oC in Different Atmospheres[J]. 中国腐蚀与防护学报, 2025, 45(6): 1528-1536.
[5] PENG Wang, CHEN Jian, YANG Lingxu, LIU Huijun, LIANG Jianping, ZENG Chaoliu. Effect of NaCl on Hot Corrosion Behavior of 347H Stainless Steel and Ni-based GH3539 Alloy in Molten Nitrate Salts[J]. 中国腐蚀与防护学报, 2025, 45(6): 1610-1618.
[6] BAI Yingxiong, WANG Yanli, LI Xiangwei, WU Zefeng, ZHANG Shuyan. Effect of Heat Treatment on Hot Corrosion Behavior of Selective Laser Melted GH4099 Nickel-based Superalloy Beneath (75%Na2SO4 + 25%NaCl) Deposits in Air at 900 oC[J]. 中国腐蚀与防护学报, 2025, 45(6): 1709-1716.
[7] CAI Ketao, JI Lei, ZHANG Zhen, FENG Qiang, DENG Weilin, LAN Guihong, HE Sha, ZHAO Zhanyong, BAI Peikang. Corrosion Behavior of Mg-Gd-Y-Zn-Zr Alloy in NaCl and Na2SO4 Solutions[J]. 中国腐蚀与防护学报, 2025, 45(5): 1289-1299.
[8] GU Songlun, ZHANG Fan, HUANG Guosheng, JIANG Dan, DONG Guojun. Corrosion Behavior of Cold Spray Cu-Ti Pseudo Alloy as Anti-fouling Material in Natural Seawater[J]. 中国腐蚀与防护学报, 2025, 45(5): 1309-1319.
[9] ZHAO Xinyu, LIU Enze, ZHANG Gong, ZHAO Yuan, NING Likui, XIN Xin, JIA Dan, LIU Weihua, TAN Zheng. Hot Corrosion Behavior of Brazed Joints of Single Crystal Ni-based DD10 Alloy Beneath Na2SO4 Deposit in Air at 850 and 900 ℃[J]. 中国腐蚀与防护学报, 2025, 45(5): 1361-1370.
[10] FAN Shilin, DU Juan, YANG Shaodan, ZHOU Yanjun, SONG Kexing, ZHANG Guoshang, YUE Pengfei, YANG Ran, WANG Xiaojun. Corrosion Behavior of Cu-15Ni-8Sn Alloy in 3.5%NaCl Solution Containing S2-[J]. 中国腐蚀与防护学报, 2025, 45(5): 1408-1416.
[11] DUAN Jingmin, DONG Yong, MIAO Dongmei, YANG Yujing, MAO Lingbo, ZHANG Zhengrong. Corrosion Behavior in Different Media and Mechanical Properties of Al0.5CoCrFeNi High-entropy Alloy After Heat Treatment[J]. 中国腐蚀与防护学报, 2025, 45(4): 983-994.
[12] ZHANG Shanshan, LIU Yuancai, XU Tiewei, YANG Fazhan. Effect of Build-up Direction and Annealing on Corrosion Properties of Selected Laser Melting Ti6Al4V Alloy[J]. 中国腐蚀与防护学报, 2025, 45(4): 995-1004.
[13] GAO Yunxia, HE Kun, ZHANG Ruiqian, LIANG Xue, WANG Xianping, FANG Qianfeng. Effect of Dissolved Oxygen on Long-term Corrosion of Domestic FeCrAl Based Alloys in High Temperature and High Pressure Waters[J]. 中国腐蚀与防护学报, 2025, 45(4): 1081-1088.
[14] ZHAI Xiwei, LIU Shiyi, WANG Li, JIA Ruiling, ZHANG Huixia. Effect of Applied Load on Corrosion Behavior of 5383 Al-alloy Welded Joints[J]. 中国腐蚀与防护学报, 2025, 45(2): 515-522.
[15] ZHANG Yongkang, ZHAI Haimin, LI Xuqiang, LI Wensheng. Hot Corrosion Behavior of Fe-based Amorphous Coatings in Mixed Salts of Na2SO4 + K2SO4 and Na2SO4 + NaCl[J]. 中国腐蚀与防护学报, 2025, 45(1): 92-102.
No Suggested Reading articles found!