Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (5): 1399-1407    DOI: 10.11902/1005.4537.2024.365
Current Issue | Archive | Adv Search |
Pulsed Current Electrodeposition Preparation and Performance of Ag/AgCl Electrode as Chloride Ion Monitoring Electrodes for Concrete
FENG Xingguo, ZHOU Qiyan, HE Aocheng, XIAO Tang, QU Zhanqing, LU Xiangyu()
College of Harbour, Coastal and Offshore Engineering, Hohai University, Nanjing 210024, China
Cite this article: 

FENG Xingguo, ZHOU Qiyan, HE Aocheng, XIAO Tang, QU Zhanqing, LU Xiangyu. Pulsed Current Electrodeposition Preparation and Performance of Ag/AgCl Electrode as Chloride Ion Monitoring Electrodes for Concrete. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1399-1407.

Download:  HTML  PDF(18923KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ag/AgCl electrode is a core component for monitoring chloride ion in concrete. In order to improve the life of Ag/AgCl electrodes, pulsed current electrodeposition was adopted to prepare Ag/AgCl electrodes. The effect of current density and electrodeposition time on the Nernst response, anti-polarization performance, and life of the Ag/AgCl electrodes were investigated in a simulated concrete pore solution. In addition, the properties of the Ag/AgCl electrodes prepared by pulsed current electrodeposition were compared to those of the counterparts produced by constant current. The results show that the former Ag/AgCl electrode has wider potential response, better anti-polarization performance, and longer life than the latter electrode, under the same current density and charge condition. The performance of Ag/AgCl electrodes decreased with the increase of pulsed current density. Under the condition of low pulsed current density, the performance of Ag/AgCl electrode can be improved by extending electrodeposition time. In general, the best performance was observed on the Ag/AgCl electrodes that prepared by electrodeposition at 0.1 mA/cm2 pulse current density for 15 h. In addition, the microstructure and the chemical composition of AgCl film on the electrode surface were characterized, and the mechanism of the improvement of performance for the Ag/AgCl electrode by the pulsed current electrodeposition was also analyzed.

Key words:  Ag/AgCl electrode      pulse current      constant current      concrete      chloride ion monitoring     
Received:  08 November 2024      32134.14.1005.4537.2024.365
ZTFLH:  TU511  
Fund: National Key Research and Development Program of China(2022YFB3207400)
Corresponding Authors:  LU Xiangyu, E-mail: luxiangyu@hhu.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.365     OR     https://www.jcscp.org/EN/Y2025/V45/I5/1399

Fig.1  Current variation programs during electrodeposition at constant current and pulsed current
Specimen No.Current modeI / mA·cm-2Time / h
C-0.1-6Constant current0.16
C-0.1-120.112
P-0.1-7.5Pulse current0.17.5
P-0.1-150.115
P-0.2-7.50.27.5
P-0.4-7.50.47.5
P-0.8-7.50.87.5
Table 1  Current parameters for the electrodeposition of Ag/AgCl electrode
Fig.2  Schematic drawing of embedding Ag/AgCl electrodes in mortar
Fig.3  Nernst equation curves of various as-electrodep-osited Ag/AgCl electrodes in simulated pore solutions with different concentrations of Cl-: (a) C-0.1-6 and P-0.1-7.5, (b) C-0.1-12 and P-0.1-15, (c) P-0.2-7.5, P-0.4-7.5 and P-0.8-7.5
Specimen No.SlopeR2
C-0.1-6-34.7550.99813
C-0.1-12-30.1700.99881
P-0.1-7.5-38.8010.99780
P-0.1-15-34.1640.99205
P-0.2-7.5-26.1010.98158
P-0.4-7.5-24.1000.96539
P-0.8-7.5-20.8850.66635
Table 2  Fitting results of Nernst curves of various as-electrodeposited Ag/AgCl electrodes in simulated pore solutions with different concentrations of Cl-
Fig.4  Polarization curves of Ag/AgCl electrodes elect-rodeposited at constant current (a) and pulsed current (b) in simulated pore solution containing 0.05 mol/L Cl-
Specimen No.I0 / A·cm-2
C-0.1-63.7346 × 10-5
C-0.1-121.1947 × 10-4
P-0.1-7.54.6584 × 10-5
P-0.1-151.4162 × 10-4
P-0.2-7.59.2827 × 10-5
P-0.4-7.58.3663 × 10-5
P-0.8-7.57.5699 × 10-5
Table 3  Exchange current densities obtained by fitting the polarization curves of various as-electrodeposited Ag/AgCl electrodes in 0.05 mol/L Cl- simulated pore solution
Fig.5  Potential variations of various as-electrodeposited Ag/AgCl electrodes in simulated concrete pore solution
Fig.6  Potential variations of various as-electrodeposited Ag/AgCl electrodes in mortar
Fig.7  Surface morphologies of AgCl layers of various as-electrodeposited Ag/AgCl electrodes: (a) C-0.1-6, (b) C-0.1-12, (c) C-0.1-7.5, (d) P-0.1-15, (e) P-0.4-7.5, (f) P-0.8-7.5
Fig.8  Cross-sectional morphologies of AgCl layers of various as-electrodeposited Ag/AgCl electrodes: (a) C-0.1-6, (b) C-0.1-12, (c) C-0.1-7.5, (d) P-0.1-15
Fig.9  EDS element mappings on the surfaces of various as-electrodeposited Ag/AgCl electrodes: (a) C-0.1-6, (b) C-0.1-12, (c) C-0.1-7.5, (d) P-0.1-15, (e) P-0.4-7.5
Specimen No.O / %Cl / %Ag / %Cl/O ratio
C-0.1-63.05536.58860.38711.976
C-0.1-124.37538.24957.3778.7426
P-0.1-7.52.53731.44966.01412.396
P-0.1-152.04038.51759.44418.881
P-0.4-7.52.00336.01061.98717.978
Table 4  EDS determined contents of O, Cl and Ag on the surfaces of Ag/AgCl electrodes
Fig.10  XRD patterns of various as-electrodeposited Ag/AgCl electrodes
[1] Sanchez T, Conciatori D, Laferriere F, et al. Modelling capillary effects on the reactive transport of chloride ions in cementitious materials [J]. Cem. Concr. Res., 2020, 131: 106033
[2] Xu G L, Wang C H. Research progress and discussion on the factors influencing the durability of structural concrete [J]. Mater. Rev., 2013, 27(11): 111
徐国良, 王彩辉. 结构混凝土耐久性影响因素的研究进展与探讨 [J]. 材料导报, 2013, 27(11): 111
[3] Thangavel K, Rengaswamy N S. Relationship between chloride/hydroxide ratio and corrosion rate of steel in concrete [J]. Cem. Concr. Compos., 1998, 20: 283
[4] Shi X M, Xie N, Fortune K, et al. Durability of steel reinforced concrete in chloride environments: an overview [J]. Constr. Build. Mater., 2012, 30: 125
[5] Apostolopoulos C A, Demis S, Papadakis V G. Chloride -induced corrosion of steel reinforcement–Mechanical performance and pit depth analysis [J]. Constr. Build. Mater., 2013, 38: 139
[6] Li Z J, Ding L Y, Ding Q J. Research progress of fiber optical sensor for monitoring chloride erosion in concrete [J]. Concrete, 2017, (10): 150
李智捷, 丁莉芸, 丁庆军. 用于检测混凝土氯离子侵蚀的光纤传感器的研究进展 [J]. 混凝土, 2017, (10): 150
[7] Abbas Y, Pargar F, Koleva D A, et al. Non-destructive measurement of chloride ions concentration in concrete-A comparative analysis of limitations and prospects [J]. Constr. Build. Mater., 2018, 174: 376
[8] Jin M, Jiang L H, Tao D B, et al. Characterization of Ag/AgCl electrode manufactured by immersion in sodium hypochloride acid for monitoring chloride content in concrete [J]. Constr. Build. Mater., 2016, 122: 310
[9] He L, Xu L K, Wang J T, et al. Performance of Ag/AgCl reference electrode prepared by hot dip coating method [J]. Corros. Sci. Prot. Technol., 2009, 21: 482
何 霖, 许立坤, 王均涛 等. 热浸涂银/氯化银参比电极性能研究 [J]. 腐蚀科学与防护技术, 2009, 21: 482
[10] Huang F L, Cao Q X, Wei Y G, et al. The preparation and electrochemical performance of Ag/AgCl electrodes [J]. Electron. Sci. Technol., 2010, 23(6): 29
黄芳丽, 曹全喜, 卫云鸽 等. Ag/AgCl电极的制备及电化学性能 [J]. 电子科技, 2010, 23(6): 29
[11] Wang L Q, Lu Z B, Wang P G, et al. Preparation of solid-state chloride sensor and its application on cement-based materials [J]. Mater. Prot., 2020, 53(11): 49
王兰芹, 路志博, 王鹏刚 等. 固态氯离子传感器的制备及其在水泥基材料中的应用 [J]. 材料保护, 2020, 53(11): 49
[12] Tian Y P, Zhang P, Zhao K Y, et al. Application of Ag/AgCl sensor for chloride monitoring of mortar under dry-wet cycles [J]. Sensors, 2020, 20: 1394
[13] Zhang M, Fu H, Tian L, et al. Embeddable chloride sensor for monitoring chloride penetration into cement mortar [J]. Sensors, 2024, 24: 2149
[14] Cui H Z, Cao L L, Cao X P, et al. Experimental investigation of chloride ion monitoring in concrete considering the coupling effect of temperature and humidity [J]. J. Build. Eng., 2024, 98: 111155
[15] Cao C W, Wang P G, Zhao T J, et al. Effect of cnrrent density and polarization time on morphology of Ag/AgCl electrode [J]. Mater. Prot., 2016, 49(12): 22
曹承伟, 王鹏刚, 赵铁军 等. 通电电流密度及极化时间对Ag/AgCl电极形貌的影响 [J]. 材料保护, 2016, 49(12): 22
[16] Du R G, Huang R S, Hu R G, et al. Embeddable combination probe for in-situ measuring Cl- and pH at the reinforcing steel/concrete interface [J]. Chin. J. Anal. Chem., 2005, 33(1): 29
杜荣归, 黄若双, 胡融刚 等. 埋置式复合探针原位测定钢筋/混凝土界面氯离子和pH值 [J]. 分析化学, 2005, 33(1): 29
[17] Jin M, Xu J X, Jiang L H, et al. Electrochemical characterization of a solid embeddable Ag/AgCl reference electrode for corrosion monitoring in reinforced concrete [J]. Electrochemistry, 2014, 82: 1040
[18] Zhang Z M. Design and preparation of highly stable Ag/AgCl chloride-sensing electrode based on film and interface structure regulation [D]. Guangzhou: South China University of Technology, 2023
张漳敏. 基于膜层与界面结构调控的高稳定性Ag/AgCl氯离子传感电极的设计制备 [D]. 广州: 华南理工大学, 2023
[19] Angst U, Elsener B, Larsen C K, et al. Potentiometric determination of the chloride ion activity in cement based materials [J]. J. Appl. Electrochem., 2010, 40: 561
[20] Zhang Z M, Hu J, Xu Z P, et al. Degradation process of Ag/AgCl chloride-sensing electrode in cement extract with low chloride concentration [J]. Corros. Sci., 2022, 198: 110107
[21] Zhang Z M, Hu J, Wang Y Y, et al. Relationship between microstructure of AgCl film and electrochemical behavior of Ag|AgCl electrode for chloride detection [J]. Corros. Sci., 2021, 184: 109393
[1] HE Aocheng, ZHOU Qiyan, XIAO Tang, QU Zhanqing, LU Xiangyu, CHEN Songgui, FENG Xingguo. Comparison of Comprehensive Properties of Several Solid-state Reference Electrodes for Concrete[J]. 中国腐蚀与防护学报, 2025, 45(3): 773-779.
[2] XIE Wenzhen, WANG Zhenyu, HAN En-Hou. Passivation Behavior of Corrosion Resistant Rebar Steels as Bare Steels in a Simulated Concrete Pore Fluid and as Rebar Steels Embedded in Concrete Made of Cement and Sea-sand in a Simulated Seawater[J]. 中国腐蚀与防护学报, 2024, 44(6): 1454-1464.
[3] DONG Zheng, MAO Yongqi, MENG Zhou, CHEN Xiangxiang, FU Chuanqing, LU Chentao. Passivation Behavior of Steel Bar Subjected to Tensile Stress in Simulated Concrete Pore Solution[J]. 中国腐蚀与防护学报, 2024, 44(6): 1547-1556.
[4] LIANG Zihao, YING Zongquan, LIU Meimei, YANG Shuai. Prediction Method for Reinforced Concrete Corrosion-induced Crack Based on Stacking Integrated Model Fusion[J]. 中国腐蚀与防护学报, 2024, 44(6): 1601-1609.
[5] SHI Xianfei, CHEN Xiaohua, MAN Cheng. Natural Passivation Behavior and Corrosion Resistance of HRB400 Steel in Simulated Concrete Pore Solution[J]. 中国腐蚀与防护学报, 2024, 44(5): 1213-1222.
[6] FENG Xingguo, GU Zhuoran, FAN Qiqi, LU Xiangyu, YANG Yashi. Corrosion Resistance of 2205 Stainless Steel Bar in Modified Coral Concretes[J]. 中国腐蚀与防护学报, 2024, 44(3): 789-796.
[7] SHANG Baihui, MA Yuantai, MENG Meijiang, LI Ying, LOU Ming, BAI Jing. Anodic Polarization Characteristics of Rebar Steel HRB400 in Simulated Concrete Pore Fluid[J]. 中国腐蚀与防护学报, 2024, 44(2): 422-428.
[8] LIU Guoqiang, ZHANG Dongfang, CHEN Haoxiang, FAN Zhihong. Natural Passivation Behavior of Pre-rusted Steel Rebar with Mill Scale in Curing Stage of Concrete[J]. 中国腐蚀与防护学报, 2024, 44(2): 505-511.
[9] LIU Jing, CHEN Xuandong, YU Aiping, GONG Xinzhi. Multi-phase Mesoscopic Numerical Simulation of Chloride Ion Diffusion in Recycled Aggregate Concrete[J]. 中国腐蚀与防护学报, 2023, 43(5): 1111-1118.
[10] DONG Zhiyong, XU Xuyi, LI Yuhang. Effect of Sand Grain Size on Cavitation Erosion of Concrete Induced by High Velocity Sand Carrying Water Flow[J]. 中国腐蚀与防护学报, 2023, 43(1): 166-172.
[11] PENG Yizhan, GONG Fuyuan, ZHAO Yuxi. Distribution of Stray Current Induced Corrosion of Reinforced Bars Within Concrete Based on Electric Field Analysis and Experiment with Transparent Imitated Concrete[J]. 中国腐蚀与防护学报, 2022, 42(5): 813-818.
[12] LIU Jun, GENG Yongjuan, LI Shaochun, XU Ailing, HOU Dongshuai, LIU Ang, LANG Xiulu, CHEN Xu, LIU Guofeng. Protection Efficacy of TEOS/IBTS Coating on Microbial Fouling of Concrete in Marine Tidal Areas[J]. 中国腐蚀与防护学报, 2022, 42(1): 135-142.
[13] AN Yiqiang, WANG Xin, CUI Zhongyu. Effect of Nitric Acid Passivation on Critical Cl- Concentration for Corrosion of 304 Stainless Steel in Simulated Concrete Pore Solution[J]. 中国腐蚀与防护学报, 2021, 41(6): 804-810.
[14] TANG Rongmao, LIU Guangming, SHI Chao, ZHANG Bangyan, TIAN Jihong, GAN Hongyu, LIU Yongqiang. Inhibition and Adsorption Behavior of Sodium Dodecyl-benzene Sulfonate on Q235 Steel in Simulated Concrete Pore Fluid[J]. 中国腐蚀与防护学报, 2021, 41(6): 857-863.
[15] GAI Xipeng, LEI Li, CUI Zhongyu. Pitting Corrosion Behavior of 304 Stainless Steel in Simulated Concrete Pore Solutions[J]. 中国腐蚀与防护学报, 2021, 41(5): 646-652.
No Suggested Reading articles found!