Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (1): 166-172    DOI: 10.11902/1005.4537.2022.083
Current Issue | Archive | Adv Search |
Effect of Sand Grain Size on Cavitation Erosion of Concrete Induced by High Velocity Sand Carrying Water Flow
DONG Zhiyong(), XU Xuyi, LI Yuhang
College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
Download:  HTML  PDF(8247KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Effect of the variation of sand grain size on cavitation erosion of concrete in sand-bearing water flow was experimentally investigated via a small looped water tunnel. Sand grains with five typical median particle sizes (0.08, 0.25, 1, 2 and 3 mm) were obtained by sieving method. For each grain size, the sand-bearing water samples with the same sand content S=12 kg/m3 for each given sand grain size were prepared respectively. The sand content of high-speed sand carrying water flow was real-timely measured by an infrared suspended solid analyzer. The pressure at the working section of the water tunnel for each sand-carrying flow with a given grain size was acquired by pressure data acquisition system in real-time, then of which a comparison was made with the case of clear water. Concrete specimens with water-cement ratio W/C=0.4, cement-sand ratio C/S=1.5,7 d aging strength fcu,k=17.8 MPa were poured. Afterwards, the specimen was placed into a specimen box fixed in the working section of water tunnel to undergo cavitation erosion test for 4 h by different flow speeds for one sand carrying water with a given sand grain size. The results showed that for the case with send content of S=12 kg/m3 and flow speed V=38.2 m/s, the flow pressure at cavitation zone decreased with the increase in sand grain size, which resulted in decrease in the incipient cavitation number and promoted the formation of cavitation; the sand carrying flow pressure at cavitation-erosion zone increased with the increase in sand grain size, which could promote the cavitation erosion. The cavitation erosion level of the concrete specimen was aggravated with the increase in sand grain size, and the cavitation erosion range was further spread with the increasing flow velocity.

Key words:  sand grain      grain size      concrete surface      cavitation erosion      high velocity flow     
Received:  24 March 2022      32134.14.1005.4537.2022.083
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(51979248)

Cite this article: 

DONG Zhiyong, XU Xuyi, LI Yuhang. Effect of Sand Grain Size on Cavitation Erosion of Concrete Induced by High Velocity Sand Carrying Water Flow. Journal of Chinese Society for Corrosion and protection, 2023, 43(1): 166-172.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.083     OR     https://www.jcscp.org/EN/Y2023/V43/I1/166

Fig.1  Venturi working section and placed position of concrete specimen (a) and dimensions of concrete specimen (b)
Fig.2  Time-averaged pressure in cavitation erosion zone under the conditions of different sand grain sizes (V=38.2 m/s)
Fig.3  Variation of cavitation number with sand grain size in cavitation zone (V=38.2 m/s)
Fig.4  Variations of cavitation erosion rate of concrete specimen with sand grain size (V=38.2 m/s)
Fig.5  Cavitation erosion status of concrete specimen at diffe-rent sand grain sizes (V= 38.2 m/s): (a) d50=0.08 mm, (b) d50=0.25 mm, (c) d50=1 mm, (d) d50=2 mm, (e) d50=3 mm
Fig.6  Variations of cavitation erosion rate of concrete specimen with d50=0.08 mm (a), d50=0.25 mm (b), d50=1 mm (c), d50=2 mm (d) and d50=3 mm (e) sand grain size at different velocities
Fig.7  Cavitation erosion status of concrete specimen at different sand grain sizes (V=28.1 m/s) (a) d50=0.08 mm, (b) d50=0.25 mm, (c) d50=1 mm, (d) d50=2 mm, (e) d50=3 mm
1 Lee W, Hoopes J A. Prediction of cavitation damage for spillways [J]. J. Hydraul. Eng., 1996, 122: 481
doi: 10.1061/(ASCE)0733-9429(1996)122:9(481)
2 Liu C G. A study on cavitation inception of isolated surface irregularities [A]. Water Conservancy and Hydroelectric Power Research Institute. Collected Research Papers of Water Conservancy and Hydroelectric Power Research Institute: 13. Hydraulics [M]. Beijing: Water Resources and Electric Power Press, 1983: 36
刘长庚. 泄水建筑物局部突体初生空化数试验研究 [A]. 中国水利水电科学研究院. 水利水电科学研究院科学研究论文集 : 第13集 (水力学) [M]. 北京: 水利电力出版社, 1983: 36
3 Gao J Z, Pan J Z, He J. High dam discharge energy dissipation and high-speed flow [A]. PanJZ, HeJ. Fifty Years of DAMS in China [M]. Beijing: China Water and Power Press, 2000: 734
高季章, 潘家铮, 何璟. 高坝泄洪消能及高速水流 [A]. 潘家铮, 何璟. 中国大坝50年 [M]. 北京: 中国水利水电出版社 2000: 734
4 Wang X, Luo S Z, Hu Y A, et al. High-speed flow erosion on a new roller compacted concrete dam during construction [J]. J. Hydrodyn., 2012, 24: 32
doi: 10.1016/S1001-6058(11)60216-3
5 Tu Q H, Yang L F. Sediment Design Manual [M]. Beijing: China Water & Power Press, 2006
涂启华, 杨赉斐. 泥沙设计手册 [M]. 北京: 中国水利水电出版社, 2006
6 L.VIII Rayleigh. On the pressure developed in a liquid during the collapse of a spherical cavity [J]. London, Edinburgh, Dublin Philos. Mag. J. Sci., 1917, 34: 94
7 Kornfeld M, Suvorov L. On the destructive action of cavitation [J]. J. Appl. Phys., 1944, 15: 495
doi: 10.1063/1.1707461
8 Harvey E N, Barnes D K, McElroy W D, et al. Bubble formation in animals. Ⅰ. Physical factors [J]. J. Cell. Comp. Physiol., 1944, 24: 1
doi: 10.1002/jcp.1030240102
9 Harvey E N, Whiteley A H, McElroy W D, et al. Bubble formation in animals. Ⅱ. Gas nuclei and their distribution in blood and tissues [J]. J. Cell. Comp. Physiol., 1944, 24: 23
doi: 10.1002/jcp.1030240103
10 Harvey E N, Barnes D K, McElroy W D, et al. Removal of gas nuclei from liquids and surfaces [J]. J. Am. Chem. Soc., 1945, 67: 156
11 Harvey E N, McElroy W D, Whiteley A H, et al. On cavity formation in water [J]. J. Appl. Phys., 1947, 18: 162
doi: 10.1063/1.1697598
12 Hu H X, Zheng Y G. The effect of sand particle concentrations on the vibratory cavitation erosion [J]. Wear, 2017, 384/385: 95
13 Lian J J, Gou W J, Li H P, et al. Effect of sediment size on damage caused by cavitation erosion and abrasive wear in sediment-water mixture [J]. Wear, 2018, 398/399: 201
14 Chen S Y, Xu W L, Luo J, et al. Experimental study on the mesoscale causes of the effect of sediment size and concentration on material cavitation erosion in sandy water [J]. Wear, 2022, 488/489: 204114
15 Tong Y, Song Q N, Li H L, et al. A comparative assessment on cavitation erosion behavior of typical copper alloys used for ship propeller [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 639
佟瑶, 宋亓宁, 李慧琳 等. 三种典型船舶螺旋桨用铜合金的空蚀行为对比研究 [J]. 中国腐蚀与防护学报, 2021, 41: 639
16 Song Q N, Wu Z Y, Li H L, et al. Effect of laser surface melting on cavitation erosion of manganese-nickel-aluminum bronze in 3.5%NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 877
宋亓宁, 武竹雨, 李慧琳 等. 激光重熔对高锰铝青铜在3.5%NaCl溶液中空蚀行为的影响研究 [J]. 中国腐蚀与防护学报, 2021, 41: 877
17 Liao T T, Chen H C, Gao T, et al. Research on the size of sediment passing through the turbine effects on cavitation and cavitation erosion for the blade of three gorges hydropower plant [J]. China Rural Water Hydropower, 2012, (2): 121
廖庭庭, 陈和春, 高甜 等. 三峡水电站过机泥沙粒径对水轮机叶片空化空蚀的影响 [J]. 中国农村水利水电, 2012, (2): 121
18 Yang J L, Wang J, Chang J S. Effect of sediment-laden flow on cavitation pressure inside of hydraulic machineries in Wanjiazhai Hydropower Station [J]. Water Resour. Hydropower Eng., 2005, 36(5): 64
杨娟丽, 王钧, 常近时. 万家寨水电站水中含沙对空化压力的影响 [J]. 水利水电技术, 2005, 36(5): 64
19 Wang L, Zhu R S, Chang J S. Effect of sand concentration in water on cavitation pressure in Qingtongxia and Bapanxia hydropower stations [J]. J. Hydr. Eng., 2008, 27(4): 44
王磊, 朱茹莎, 常近时. 青铜峡与八盘峡水电站水中泥沙含量对空化压力的影响 [J]. 水力发电学报, 2008, 27(4): 44
20 Zhang R. Study on cavitation and wear of turbine runner in high sediment content water [D]. Chongqing: Chongqing Jiaotong University, 2020
张绒. 高含沙水条件下水轮机转轮的空蚀与磨损研究 [D]. 重庆: 重庆交通大学, 2020
21 Wang J D, Chen H S, Qin L, et al. The key role of micro-particles in hydraulic mechanical cavitation erosion [J]. Chin. Sci. Bull., 2007, 52: 2683
doi: 10.1360/csb2007-52-22-2683
汪家道, 陈皓生, 秦力 等. 水力机械空蚀中微颗粒的关键作用 [J]. 科学通报, 2007, 52: 2683
22 Zhao W G, Han X D, Sheng J P, et al. Research on the effects of silt mean diameters and silt concentrations on the cavitation flow in a nozzle [J]. J. Shanghai Jiaotong Univ., 2017, 51: 1399
赵伟国, 韩向东, 盛建萍 等. 沙粒粒径与含量对喷嘴空化的影响 [J]. 上海交通大学学报, 2017, 51: 1399
23 Wang X L, Zhang J J, Zhu R S, et al. Analysis of the influence of the solid particle content on the cavitation characteristics of a centrifugal pump [J]. J. Eng. Thermal Energy Power, 2014, 29: 202
王秀礼, 张俊杰, 朱荣生 等. 固体颗粒含量对离心泵空化特性影响分析 [J]. 热能动力工程, 2014, 29: 202
24 Yang C X, Dong F D, Cheng X R, et al. Numerical analysis of effect of sand particle size of silt-laden water flow on wear characteristics of centrifugal pump impeller [J]. J. Lanzhou Univ. Technol., 2014, 40(4): 45
杨从新, 董富弟, 程效锐 等. 含沙水流中粒径对离心泵叶轮磨损特性影响的数值分析 [J]. 兰州理工大学学报, 2014, 40(4): 45
25 Dong Z Y, Sun J Y, Li Y H, et al. Experimental study of effects of sediment concentration on cavitation erosion in high velocity flows [J]. J. Hydr. Eng., 2021, 40(10): 10
董志勇, 孙金阳, 李宇航 等. 含沙量对高速水流空蚀影响的试验研究 [J]. 水力发电学报, 2021, 40(10): 10
26 Lu X F. Influence of sediment concentration and diameter on flow characteristics [D]. Zhengzhou: North China University of Water Resources and Electric Power, 2018
路新飞. 含沙量和泥沙粒径对水流特性的影响 [D]. 郑州: 华北水利水电大学, 2018
27 Huang J T, Tian L Y. Effect of liquid viscosity on cavity contraction and expansion [J]. J. Hydraul. Eng., 1988, (12): 41
黄继汤, 田立言. 液体粘性对空泡收缩及膨胀的影响 [J]. 水利学报, 1988, (12): 41
28 Jiang S L, Zheng Y G, Yao Z M. Damage behavior of 20SiMn low alloy steel in slurry with different particle sizes [J]. Acta Metall. Sin., 2004, 40: 163
姜胜利, 郑玉贵, 姚治铭. 20SiMn低合金钢在不同砂粒粒径的多相流中的损伤行为 [J]. 金属学报, 2004, 40: 163
[1] WANG Yanfei, LI Yaozhou, HUANG Yuting, XIE Honglin, WU Weijie. Effect of Grain Size on Hydrogen Embrittlement of 304L Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 494-506.
[2] SONG Qining, WU Zhuyu, LI Huilin, TONG Yao, XU Nan, BAO Yefeng. Effect of Laser Surface Melting on Cavitation Erosion of Manganese-nickel-aluminum Bronze in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(6): 877-882.
[3] TONG Yao, SONG Qining, LI Huilin, XU Nan, BAO Yefeng, ZHANG Genyuan, ZHAO Lijuan. A Comparative Assessment on Cavitation Erosion Behavior of Typical Copper Alloys Used for Ship Propeller[J]. 中国腐蚀与防护学报, 2021, 41(5): 639-645.
[4] Xinyuan PENG,Xianliang ZHOU,Xiaozhen HUA. Effect of Grain Size on Susceptibility to Intergranular Corrosion of 316LN Stainless Steel[J]. 中国腐蚀与防护学报, 2016, 36(1): 25-30.
[5] YUAN Juntao,WU Ximao,WANG Wen,ZHU Shenglong,WANG Fuhui. Effect of Grain Size on Oxidation of Heat-resistant Steels in High Temperature Water Steam[J]. 中国腐蚀与防护学报, 2013, 33(4): 257-264.
[6] YU Shurong,HE Yanni,LI Shuxin,WANG Lu. Effect of Grain Size on Susceptibility to Intergranular Corrosion for Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2013, 33(1): 70-74.
[7] FENG Wanli, ZHANG Lefu, MA Mingjuan. EFFECTS OF ROLLING ON THE SPECIAL GRAIN BOUNDARIES AND INTERGRANULAR CORROSION OF ALLOY 690[J]. 中国腐蚀与防护学报, 2012, 32(4): 296-299.
[8] ;. Effect of grain size on the atmospheric corrosion resistance of carbon steel in industrial environment[J]. 中国腐蚀与防护学报, 2007, 27(4): 193-196 .
[9] . CORROSION BEHAVIOR OF Fe-10Cr NANOCRYSTALLINE COATINGS ( I ) THE PASSIVE BEHAVIOR OF Fe-10CrNANOCRYSTALLINE COATINGS IN ACIDIC SOLUTION[J]. 中国腐蚀与防护学报, 2007, 27(1): 35-42 .
[10] . CORROSION BEHAVIOR OF Fe-10Cr NANOCRYSTALLINE COATINGS Ⅱ.CORROSION BEHAVIOR OF Fe-10Cr NANOCRYSTALLINE COATINGS IN ACIDIC SOLUTION WITH Cl-[J]. 中国腐蚀与防护学报, 2007, 27(1): 43-47 .
[11] Yanchun Lou; Fangxin Zhao; Bo Yu; Jingcheng Wang; Yunlong Xiong. ELECTROCHEMICAL CORROSION AND CAVITATION EROSION BEHAVIOR OF Cr-Ni HYDRAULEC TURBINE MATERIAL[J]. 中国腐蚀与防护学报, 2005, 25(5): 312-316 .
[12] ;. CAVITATION EROSION BEHAVIORS AND MECHANISM OF 1Cr18Ni9TiSTAINLESS STEEL IN CHLORIDE SOLUTION[J]. 中国腐蚀与防护学报, 2005, 25(3): 157-162 .
[13] Guanfa Lin. Effect of CO2 Partial Pressure on the Morphology of Corrosion Metallic Product Scales[J]. 中国腐蚀与防护学报, 2004, 24(5): 284-288 .
[14] Suzhen Luo; Hemin Jing; Yugui Zheng. CAVITATION EROSION BEHAVIOR OF 20SiMnLOW ALLOY STEEL IN DISTILLED WATERAND 3% SODIUM CHLORIDE SOLUTION[J]. 中国腐蚀与防护学报, 2003, 23(4): 206-210 .
[15] Biao Wang; Yulin Wang; Zihua Zhang. PLATING RARE EARTH CHROMIUM ON HYDRAULIC TURBINE'S SUBSTRATES TO IMPROVE RESISTANCE TO CAVITATION EROSION AND ABRASION[J]. 中国腐蚀与防护学报, 2003, 23(1): 34-37 .
No Suggested Reading articles found!