Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (5): 1408-1416    DOI: 10.11902/1005.4537.2024.355
Current Issue | Archive | Adv Search |
Corrosion Behavior of Cu-15Ni-8Sn Alloy in 3.5%NaCl Solution Containing S2-
FAN Shilin1,2, DU Juan2(), YANG Shaodan3, ZHOU Yanjun4, SONG Kexing2, ZHANG Guoshang2, YUE Pengfei2, YANG Ran4, WANG Xiaojun1
1 Zhengzhou Research Institute of Harbin Institute of Technology, Zhengzhou 450046, China
2 Institute of Materials Science, Henan Academy of Sciences, Zhengzhou 450046, China
3 School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450046, China
4 School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China
Cite this article: 

FAN Shilin, DU Juan, YANG Shaodan, ZHOU Yanjun, SONG Kexing, ZHANG Guoshang, YUE Pengfei, YANG Ran, WANG Xiaojun. Corrosion Behavior of Cu-15Ni-8Sn Alloy in 3.5%NaCl Solution Containing S2-. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1408-1416.

Download:  HTML  PDF(12782KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of Cu-15Ni-8Sn alloy in 3.5%NaCl solution containing 10 mg/L sulfur ions (S2-) was assessed by means of immersion tests, electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). The results show that after 30 d of immersion in 3.5%NaCl solution without sulfur ions, a stable passivation film is formed on the surface of Cu-15Ni-8Sn alloy, mainly composed of basic copper chloride Cu2(OH)3Cl. The passivation film can effectively prevent the further attack of Cl-, and the average corrosion rate is 0.02235 g·m-2·h-1. In sulfur ion-containing solutions, the sulfides (Cu2S and CuS) formed in the initial stage provide a certain degree of protection. However, with the extension of time, after the alloy is immersed and corroded for 30 days in the solution containing sulfur ions, the corrosion weight loss rate is 0.03418 g·m-2·h-1, which is higher than that in the solution without sulfur ions. the corrosion products are turn into the mixture of basic copper chloride (Cu2(OH)3Cl), copper sulfate (CuSO4), copper sulfide (CuS), nickel hydroxide (Ni(OH)2), and tin sulfide (SnS2). This porous corrosion film provides much weaker protection for the alloys, and the deterioration and rupture of the sulfide film further aggravate the corrosion process, making the average corrosion rate of the alloy in the sulfur ion-containing environment higher than that in a sulfur ion-free environment.

Key words:  Cu-15Ni-8Sn alloy      sulfide-induced corrosion      corrosion behavior     
Received:  31 October 2024      32134.14.1005.4537.2024.355
ZTFLH:  TG172.5  
Fund: Research Start-up Funding of Henan Academy of Sciences(231817003);Henan Provincial Natural Science Foundation(242300420030)
Corresponding Authors:  DU Juan, E-mail: juan_du@hnas.ac.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.355     OR     https://www.jcscp.org/EN/Y2025/V45/I5/1408

Fig.1  Corrosion rates of Cu-15Ni-8Sn alloy during 30 d immersion in 3.5%NaCl solutions containing 0 and 10 mg/L Na2S
Fig.2  Nyquist plots (a, d) and Bode plots (b, c, e, f) of Cu-15Ni-8Sn alloy after immersion for different time in 3.5%NaCl solutions containing 0 mg/L (a-c) and 10 mg/L (d-f) Na2S
Fig.3  Equivalent circuits diagrams for fitting EIS of Cu-15Ni-8Sn alloy immersed in 3.5%NaCl solutions with 0 mg/L Na2S for 1-30 d and 10 mg/L Na2S for 6-30 d (a), and 10 mg/L Na2S for 1-3 d (b)
Time / dRs / Ω·cm2Qf-Y0 / Ω-1·cm-2·s nQf-nRf / Ω·cm2Qdl-Y0 / Ω-1·cm-2·s nQdl-nRt / Ω·cm2
15.6965.574 × 10-50.74573.4911.500 × 10-40.75782.200 × 104
37.2842.397 × 10-40.72584.610 × 1012.451 × 10-40.65613.743 × 104
66.0429.567 × 10-50.67432.235 × 1012.200 × 10-40.69593.132 × 104
125.7308.860 × 10-50.65772.785 × 1012.571 × 10-40.68352.835 × 104
185.3267.027 × 10-50.63672.580 × 1013.513 × 10-40.67622.328 × 104
245.6606.378 × 10-50.64212.416 × 1013.697 × 10-40.68082.302 × 104
306.0226.192 × 10-40.63462.511 × 1014.221 × 10-40.69352.319 × 104
Table 1  Fitting parameters of EIS of Cu-15Ni-8Sn alloy after immersion in 3.5%NaCl solution without addition of Na2S for different time
Time / dRs / Ω·cm2Qdl-Y0 / Ω-1·cm-2·s nQdl-nRf / Ω·cm2Qdl-Y0 / Ω-1·cm-2·s nQdl-nRt / Ω·cm2W / 10-4·Ω-1·cm-2·s1/2
17.3982.654 × 10-40.8018---7.547 × 1031.361 × 10-3
37.6324.227 × 10-40.7660---8.231 × 1031.571 × 10-3
66.0063.167 × 10-40.58147.7581.212 × 10-40.88432.429 × 104-
125.3723.184 × 10-40.53411.404 × 1012.217 × 10-40.82552.230 × 104-
185.7382.241 × 10-40.54261.543 × 1012.616 × 10-40.78742.646 × 104-
245.8212.265 × 10-40.54451.780 × 1012.902 × 10-40.78092.454 × 104-
305.1021.622 × 10-40.53991.957 × 1014.016 × 10-40.72752.248 × 104-
Table 2  Fitting parameters of EIS of Cu-15Ni-8Sn alloy after immersion in 3.5%NaCl aqueous solution containing 10 mg/L Na2S for different time
Fig.4  Surface micro-morphologies and elemental contents of Cu-15Ni-8Sn alloy after immersion in 3.5%NaCl solutions containing 0 mg/L (a-d) and 10 mg/L (e-h) Na2S for 1 d (a, e), 6 d (b, f), 18 d (c, g) and 30 d (d, h)
Fig.5  Cross-sectional morphologies and element distributions of Cu-15Ni-8Sn alloy after 30 d immersion in 3.5%NaCl solutions containing 0 mg/L (a) and 10 mg/L (b) Na2S
Fig.6  XRD patterns of Cu-15Ni-8Sn alloy after 30 d immersion in 3.5%NaCl solutions containing 0 mg/L and 10 mg/L Na2S
Fig.7  XPS full spectra of Cu-15Ni-8Sn alloy after 30 d immersion in 3.5%NaCl solutions containing 0 mg/L (a) and 10 mg/L (b) Na2S
Fig.8  XPS spectra of corrosion products formed on Cu-15Ni-8Sn alloy after 30 d immersion in 3.5%NaCl solutions containing 0 mg/L (a1-d1) and 10 mg/L (a2-d2) Na2S
[1] Caris J, Varadarajan R, Stephens Jr J J, et al. Microstructural effects on tension and fatigue behavior of Cu-15Ni-8Sn sheet [J]. Mater. Sci. Eng., 2008, 491A: 137
[2] Lei Y H, Yin Y S, Liu C H, et al. Electrochemical corrosion behavior of Cu-15Ni-8Sn alloy in marine microbial medium [J]. Adv. Mater. Res, 2009, 79-82: 1099
[3] Appa Rao B V. Chaitanya Kumar K. 5-(3-Aminophenyl)tetrazole-A new corrosion inhibitor for Cu-Ni (90/10) alloy in seawater and sulphide containing seawater [J]. Arab. J. Chem., 2017, 10(suppl. 2) : S2245
[4] Patil A P, Tupkary R H. Cu-Ni-Zn-Mn alloys for sulphide polluted seawater applications [J]. J. Corros. Sci. Eng., 2003, 7
[5] Yuan T, Zhang M D, Ni J H, et al. The brazing effect on the corrosion mechanism of a multilayer material with Cu [J]. Anti-Corros Methods Mater., 2017, 64: 664
[6] ElDomiaty A, Alhajji J N. The susceptibility of 90Cu-10Ni alloy to stress corrosion cracking in seawater polluted by sulfide ions [J]. J. Mater. Eng. Perform., 1997, 6: 534
[7] Alhajji J N, Reda M R. Corrosion of Cu-Ni alloys in sulfide-polluted seawater [J]. Corrosion, 1993, 49: 809
[8] Eiselstein L E, Syrett B C, Wing S S, et al. The accelerated corrosion of Cu-Ni alloys in sulphide-polluted seawater: mechanism no.2 [J]. Corros. Sci., 1983, 23: 223
[9] De Sanchez S R, Schiffrin D J. The flow corrosion mechanism of copper base alloys in sea water in the presence of sulphide contamination [J]. Corros. Sci., 1982, 22: 585
[10] Shi Z Y, Liu B, Liu Y, et al. Progress of corrosion behavior and anti-corrosion technology for typical copper-nickel alloys under marine environment [J]. Equip. Environ. Eng., 2020, 17(8): 38
石泽耀, 刘 斌, 刘 岩 等. 典型铜镍合金在海洋环境中腐蚀行为与防护技术研究进展 [J]. 装备环境工程, 2020, 17(8): 38
[11] Deyong L, Elboujdaïni M, Tremblay R, et al. Electrochemical behaviour of rapidly solidified and conventionally cast Cu-Ni-Sn alloys [J]. J. Appl. Electrochem., 1990, 20: 756
[12] Amegroud H, Guenbour A, Bellaouchou A, et al. A comprehensive investigation of the electrochemical behavior of nickel-aluminum bronze alloy in alkaline solution: the effect of film formation potential [J]. Colloids Surf., 2021, 614A: 126126
[13] Kuss C, Payne N A, Mauzeroll J. Probing passivating porous films by scanning electrochemical microscopy [J]. J. Electrochem. Soc., 2016, 163: H3066
[14] Pan W, Li Y, Sun Z Y, et al. Application of electrochemical impedance spectroscopy in corrosion protection [J]. New Chem. Mater., 2021, 49(10): 257
潘 巍, 李 瑜, 孙昭宜 等. 电化学阻抗谱技术在腐蚀防护中的应用现状 [J]. 化工新型材料, 2021, 49(10): 257
[15] Wang L Q, Snihirova D, Deng M, et al. Revealing physical interpretation of time constants in electrochemical impedance spectra of Mg via Tribo-EIS measurements [J]. Electrochim. Acta, 2022, 404: 139582
[16] Zhao J G, Gong X X, Yu Y P, et al. Research and application of Cu-15Ni-8Sn elastic alloy [J]. Shanghai Met. (Col. Sec.), 1989, (3): 15
赵建国, 龚学湘, 俞玉平 等. Cu-15Ni-8Sn弹性合金的研究与应用 [J]. 上海金属有色分册, 1989, (3): 15
[17] Wang S L, Li J L, Zhang R X, et al. Charge transfer resistance of copper and nickel thin film electrodes in nano dimensions [J]. Mater. Lett., 2017, 198: 61
[18] Li G X, Xing H Y, Du M, et al. Accelerated corrosion of 70/30 copper-nickel alloys in sulfide-polluted seawater environment by sulfide [J]. J. Mater. Res. Technol., 2024, 30: 8620
[19] Wang B N, Wang X Z, Yang S, et al. Research progress on catalysts for organic sulfur hydrolysis: Review of activity and stability [J]. Chin. J. Chem. Eng., 2024, 71: 203
[20] Liu T, Zhang W X, Zhai X Y, et al. Dense ternary-size particles interstitial filling gradation stacking model for preparing high-quality indium tin oxide targets [J]. Chem. Eng. Sci., 2022, 248: 117165
[21] Nesbitt H W, Legrand D, Bancroft G M. Interpretation of Ni 2p XPS spectra of Ni conductors and Ni insulators [J]. Phys. Chem. Min., 2000, 27: 357
[22] Ulrich Hillebrecht F, Fuggle J C, Bennett P A, et al. Electronic structure of Ni and Pd alloys. II. X-ray photoelectron core-level spectra [J]. Phys. Rev., 1983, 27B: 2179
[23] Dahal S, Rana D, Sinkovic B. Changes in electronic structure within NiS x (0.60 < x < 1.53) compound series [J]. Vacuum, 2025, 231: 113806
[24] Koteeswara Reddy N, Devika M, Hahn Y B, et al. Impact of chemical treatment on the surface, structure, optical and electrical properties of SnS thin films [J]. Appl. Surf. Sci., 2013, 268: 317
[25] Yin B, Liu T, Dong L H, et al. Corrosion resistance of Cu-15Ni-8Sn alloy in seawater [J]. Corros. Prot., 2012, 33: 849
尹 兵, 刘 涛, 董丽华 等. Cu-15Ni-8Sn合金在海水中的耐腐蚀性研究 [J]. 腐蚀与防护, 2012, 33: 849
[26] Mansfeld F, Liu G, Xiao H, et al. The corrosion behavior of copper alloys, stainless steels and titanium in seawater [J]. Corros. Sci., 1994, 36: 2063
[27] Li G X, Xing H Y, Du M, et al. Accelerated corrosion of 70/30 copper-nickel alloys in sulfide-polluted seawater environment by sulfide [J]. J. Mater. Res. Technol., 2024, 30: 8620
[28] Al Hossani H I, Saber T M H, Mohammed R A, et al. Galvanic corrosion of copper-base alloys in contact with molybdenum-containing stainless steels in Arabian gulf water [J]. Desalination, 1997, 109: 25
[1] CAI Ketao, JI Lei, ZHANG Zhen, FENG Qiang, DENG Weilin, LAN Guihong, HE Sha, ZHAO Zhanyong, BAI Peikang. Corrosion Behavior of Mg-Gd-Y-Zn-Zr Alloy in NaCl and Na2SO4 Solutions[J]. 中国腐蚀与防护学报, 2025, 45(5): 1289-1299.
[2] GU Songlun, ZHANG Fan, HUANG Guosheng, JIANG Dan, DONG Guojun. Corrosion Behavior of Cold Spray Cu-Ti Pseudo Alloy as Anti-fouling Material in Natural Seawater[J]. 中国腐蚀与防护学报, 2025, 45(5): 1309-1319.
[3] GAO Yunxia, HE Kun, ZHANG Ruiqian, LIANG Xue, WANG Xianping, FANG Qianfeng. Effect of Dissolved Oxygen on Long-term Corrosion of Domestic FeCrAl Based Alloys in High Temperature and High Pressure Waters[J]. 中国腐蚀与防护学报, 2025, 45(4): 1081-1088.
[4] DUAN Jingmin, DONG Yong, MIAO Dongmei, YANG Yujing, MAO Lingbo, ZHANG Zhengrong. Corrosion Behavior in Different Media and Mechanical Properties of Al0.5CoCrFeNi High-entropy Alloy After Heat Treatment[J]. 中国腐蚀与防护学报, 2025, 45(4): 983-994.
[5] ZHANG Shanshan, LIU Yuancai, XU Tiewei, YANG Fazhan. Effect of Build-up Direction and Annealing on Corrosion Properties of Selected Laser Melting Ti6Al4V Alloy[J]. 中国腐蚀与防护学报, 2025, 45(4): 995-1004.
[6] ZHAI Xiwei, LIU Shiyi, WANG Li, JIA Ruiling, ZHANG Huixia. Effect of Applied Load on Corrosion Behavior of 5383 Al-alloy Welded Joints[J]. 中国腐蚀与防护学报, 2025, 45(2): 515-522.
[7] YANG Haiyun, LIU Chunquan, XIONG Fen, CHEN Minna, XIE Yuelin, PENG Longsheng, SUN Sheng, LIU Haizhou. Research Progress on Preparation of Corrosion-resistant Coatings by Extreme High-speed Laser Material Deposition[J]. 中国腐蚀与防护学报, 2024, 44(4): 847-862.
[8] WU Hailiang, CHEN Yuqiang, HUANG Liang, GU Hongyu, SUN Hongbo, LIU Jiajun, WANG Naiguang, SONG Yufeng. Corrosion Behavior of Welded Partitions of 3003 Al-alloy Used for Radiators of High-speed Train[J]. 中国腐蚀与防护学报, 2024, 44(4): 1081-1088.
[9] WANG Yuxue, ZHU Aohong, WANG Liwei, CUI Zhongyu. Comparative Study on Corrosion Behavior of Two Novel Ni-Cr-Mo-V Steels in Simulated Seawater Environment[J]. 中国腐蚀与防护学报, 2024, 44(4): 918-926.
[10] ZHANG Chenglong, ZHANG Bin, ZHU Min, YUAN Yongfeng, GUO Shaoyi, YIN Simin. Corrosion Behavior of Medium Entropy CoCrNi-alloy in NH4Cl Solutions[J]. 中国腐蚀与防护学报, 2024, 44(3): 725-734.
[11] DENG Zhibin, HU Xiao, LIU Yingyan, YUE Hang, ZHANG Qian, TANG Haiping, LU Rui. Effect of Magnetic Field on Corrosion Behavior of L360 Pipeline Steel and Welded Joints in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(2): 471-479.
[12] XIONG Yiming, MEI Wan, WANG Zehua, YU Rui, XU Shiyao, WU Lei, ZHANG Xin. Corrosion Behavior of 5083 Al-alloy under Magnetic Field[J]. 中国腐蚀与防护学报, 2024, 44(1): 229-236.
[13] SONG Dongdong, WAN Hongxia, XU Dong, ZHOU Qian. Influence of Rolling on Corrosion Behavior of ZM5 Mg-alloy[J]. 中国腐蚀与防护学报, 2024, 44(1): 213-220.
[14] QU Weiwei, CHEN Zehao, PEI Yanling, LI Shusuo, WANG Fuhui. Spreading and Corrosion Behavior of CMAS Melt on Different Materials for Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2023, 43(6): 1407-1412.
[15] ZHONG Jiaxin, GUAN Lei, LI Yu, HUANG Jiayong, SHI Lei. Effect of Second Phase on Corrosion Behavior of Friction-stir-welded Joints of 2xxx Series Al-alloy[J]. 中国腐蚀与防护学报, 2023, 43(6): 1247-1254.
No Suggested Reading articles found!