Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (5): 1300-1308    DOI: 10.11902/1005.4537.2024.346
Current Issue | Archive | Adv Search |
Influence of Sb on Corrosion Behavior of High-strength Structural Steels Exposed to Atmosphere at East Coast Region
FENG Yuqin1, GUO Tonghan1, YU Weihan1, WU Wei1,2(), ZHANG Daquan1,2
1 Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, School of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 201306, China
2 Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
Cite this article: 

FENG Yuqin, GUO Tonghan, YU Weihan, WU Wei, ZHANG Daquan. Influence of Sb on Corrosion Behavior of High-strength Structural Steels Exposed to Atmosphere at East Coast Region. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1300-1308.

Download:  HTML  PDF(21641KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

High-strength structural steel faces corrosion problems in the marine environment, so it needs to be microalloyed with specific elements to improve its corrosion resistance, but the role of trace alloying elements needs to be further investigated, so in this paper, the differences in the corrosion behavior of Sb-containing and Sb-free high-strength structural steel in the atmospheric environment at the east coast region near Donghai bridge, Lingang new distric, Shanghai are comparatively investigated through field exposure tests, electrochemical tests, and various characterization means to elucidate the effect of the addition of Sb on the corrosion resistance of high-strength structural steel. The research has found that the addition of Sb can optimize the microstructure of the steel with refined grains. At the same time, the addition of Sb can slow down the corrosion rate of steel and reduce the corrosion current density. The corrosion product layers formed on Sb-containing steels have better compactness and protectiveness rather than those on Sb-free steels, which can effectively resist the access of aggressive Cl ions into the matrix. In addition, with the progress of corrosion process, the corrosion pits on the surface of Sb-containing steels become larger in diameter and shallower in depth, and the rate of this change is more obvious than that of Sb-free steels, and this statistical result confirms that the addition of Sb can promote the corrosion pattern toward uniform corrosion.

Key words:  atmospheric corrosion      corrosion product film      high-strength structural steel      Sb      east sea environment      corrosion resistance     
Received:  18 October 2024      32134.14.1005.4537.2024.346
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China(52101068)
Corresponding Authors:  WU Wei, E-mail: wuweicorr@shiep.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.346     OR     https://www.jcscp.org/EN/Y2025/V45/I5/1300

MaterialCSiMnPSCrCuNiSbFe
Sb-free0.0580.271.560.0070.0030.450.320.82-Bal.
Sb-added0.0530.251.580.0100.0020.440.350.840.012Bal.
Table 1  Chemical compositions of two tested steels
Fig.1  Microstructures of Sb-free steel (a, b) and Sb-added steel (c, d)
Fig.2  Potentiodynamic polarization curves of Sb-free and Sb-added steels
Fig.3  Surface morphologies and EDS analysis results of Sb-free steel (a-c) and Sb-added steel (d-f) after atmospheric exposure experiment
Fig.4  Cross-sectional morphologies (a1, b1) and element distributions (a2, b2) of the corrosion product films formed on Sb-free steel (a) and Sb-added steel (b) during atmospheric exposure
Fig.5  EPMA analysis of the local areas of the corrosion product films formed on Sb-added steel during atmospheric exposure
Fig.6  XRD analysis of the corrosion products formed on two steels during atmospheric exposure (a), and α/γ* ratios (b)
Fig.7  XPS fine spectrum of Sb 3d in the corrosion products of Sb-added steel
Fig.8  Surface morphologies of Sb-free steel (a-c) and Sb-added steel (d-f) after atmospheric exposure and then removal of corrosion products
Fig.9  3D surface profiles (a1, b1) and maximal pit depths (a2, b2) of Sb-free steel (a) and Sb-added steel (b) after the removal of corrosion products
Fig.10  Statistical analysis of corrosion pits of Sb-free steel (a) and Sb-added steel (b)
[1] Liu W B, Wang W J, Wang S Q, et al. Experiment research on microstructure and mechanical properties of high strength low alloy structural steels [J]. Petro-Chem. Equip., 2022, 51: 6
刘五兵, 王文君, 王世清 等. 高强度低合金结构钢组织性能试验研究 [J]. 石油化工设备, 2022, 51: 6
[2] Han Z X, Li C, Liu G Q, et al. Study on welding technology of Q690D low alloy high strength structural steel [J]. Weld. Technol., 2019, 48: 54
韩振仙, 李 超, 柳国强 等. Q690D低合金高强结构钢焊接工艺研究 [J]. 焊接技术, 2019, 48: 54
[3] Branco R, Berto F. High-strength low-alloy steels [J]. Metals, 2021, 11: 1000
[4] Wang J Y, Zhou X J, Wang H L, et al. Initial corrosion behavior of carbon steel and high strength steel in South China Sea atmosphere [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 237
王靖羽, 周学杰, 王洪伦 等. 碳钢和高强钢在南海大气环境中的初期腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 237
[5] Li Z Y, Wang G, Luo S W, et al. Early corrosion behavior of EH36 ship plate steel in tropical marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 463
李子运, 王 贵, 罗思维 等. 热带海洋大气环境中EH36船板钢早期腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 463
doi: 10.11902/1005.4537.2019.203
[6] Ma H, Tian H Y, Liu Y Q, et al. Corrosion behavior of S420 steel in different marine zones [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 635
麻 衡, 田会云, 刘宇茜 等. S420海工钢在不同海洋区带环境下的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 635
[7] Yu J X, Wang H K, Yu Y, et al. Corrosion behavior of X65 pipeline steel: comparison of wet-dry cycle and full immersion [J]. Corros. Sci., 2018, 133: 276
[8] Liang M X, Melchers R, Chaves I. Corrosion and pitting of 6060 series aluminium after 2 years exposure in seawater splash, tidal and immersion zones [J]. Corros. Sci., 2018, 140: 286
[9] Melchers R E. Effect on marine immersion corrosion of carbon content of low alloy steels [J]. Corros. Sci., 2003, 45: 2609
[10] Wu W. Stress corrosion cracking mechanism of Nb/Sb-microalloyed high strength steels in polluted marine atmosphere [D]. Beijing: University of Science and Technology Beijing, 2020
吴 伟. 铌和锑微合金化高强钢在污染海洋大气中的应力腐蚀机理研究 [D]. 北京: 北京科技大学, 2020
[11] Chang X T, Song J Q, Wang B, et al. Effect of micro-alloying with Cr, N and Al on corrosion resistance of high manganese austenitic steel in acidic salt spray environment [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 47
常雪婷, 宋嘉琪, 王 冰 等. 微合金化对高锰奥氏体钢在酸性盐雾环境下的耐蚀性能影响研究 [J]. 中国腐蚀与防护学报, 2024, 44: 47
[12] Yin J, Gao Y H, Yi F. Effect of Ag micro-alloying on microstructure and corrosion behavior of Mg-Zn-Ca alloy [J]. J. Chin. Soc. Corros. Prot., 2024, 44(5): 1274
尹 洁, 高永浩, 易 芳. Ag微合金化对Mg-Zn-Ca合金微观组织及腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2024, 44(5): 1274
[13] Sun L Y, Liu X, Xu X, et al. Review on niobium application in microalloyed steel [J]. J. Iron Steel Res. Int., 2022, 29: 1513
[14] Fazeli F, Amirkhiz B S, Scott C, et al. Kinetics and microstructural change of low-carbon bainite due to vanadium microalloying [J]. Mater. Sci. Eng., 2018, 720A: 248
[15] Msallamova S, Fojt J, Novak P, et al. Effects of Cu microalloying on corrosion behavior of spring steel 54SiCr6 [J]. Mater. Chem. Phys., 2023, 309: 128323
[16] Zhang T Y, Liu W, Dong B J, et al. Corrosion of Cu-doped Ni-Mo low-alloy steel in a severe marine environment [J]. J. Phys. Chem. Solids, 2022, 163: 110584
[17] Hao L, Zhang S X, Dong J H, et al. A study of the evolution of rust on Mo-Cu-bearing fire-resistant steel submitted to simulated atmospheric corrosion [J]. Corros. Sci., 2012, 54: 244
[18] Wu W, Dai Z Y, Liu Z Y, et al. Synergy of Cu and Sb to enhance the resistance of 3%Ni weathering steel to marine atmospheric corrosion [J]. Corros. Sci., 2021, 183: 109353
[19] Yang X J, Yang Y, Sun M H, et al. A new understanding of the effect of Cr on the corrosion resistance evolution of weathering steel based on big data technology [J]. J. Mater. Sci. Technol., 2022, 104: 67
doi: 10.1016/j.jmst.2021.05.086
[20] Gao J Z, Wang N X, Chen H, et al. The Influence of 1wt.%Cr on the corrosion resistance of low-alloy steel in marine environments [J]. Metals, 2023, 13: 1050
[21] Zuo M F, Chen Y L, Mi Z L, et al. Effects of Cr content on corrosion behaviour and corrosion products of spring steels [J]. J. Iron Steel Res. Int., 2019, 26: 1000
[22] Wang Y, Liu Z L, Liu X Q, et al. Microstructure and corrosion resistance of hot rolled Cr/Ni micro-alloying high strength weathering steel [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 39
王 越, 刘子利, 刘希琴 等. 热轧态Cr、Ni微合金化高强度耐候钢组织与耐蚀性能 [J]. 中国腐蚀与防护学报, 2018, 38: 39
[23] Wang L J, Wei Y H, Ma J J, et al. Optimizing the resistance of Cr-advanced steel to CO2 corrosion with the addition of Ni [J]. J. Mater. Res. Technol., 2024, 32: 97
[24] Zhang X, Zhou J H, Liu C, et al. Effects of Ni addition on mechanical properties and corrosion behaviors of coarse-grained WC-10(Co, Ni) cemented carbides [J]. Int. J. Refract. Met. Hard Mater., 2019, 80: 123
[25] Li D L, Fu G Q, Zhu M Y, et al. Effect of Ni on the corrosion resistance of bridge steel in a simulated hot and humid coastal-industrial atmosphere [J]. Int. J. Miner. Metall. Mater., 2018, 25: 325
[26] Yang Y, Yang X J, Jia J H, et al. Effect of Sb and Sn on the corrosion behavior of low alloy steel in simulated polluted marine atmosphere [J]. Surf. Technol., 2021, 50: 224
杨 颖, 杨小佳, 贾静焕 等. Sb和Sn微合金化对低合金钢在模拟污染海洋大气中腐蚀行为的影响 [J]. 表面技术, 2021, 50: 224
[27] Wu W, Liu N Y, Chai P L, et al. Roles of Sb addition on the corrosion resistance of the low‐alloy steel in a real tropical marine atmosphere [J]. Mater. Corros., 2022, 73: 733
[28] Yang Y, Cheng X Q, Zhao J B, et al. A study of rust layer of low alloy structural steel containing 0.1%Sb in atmospheric environment of the Yellow Sea in China [J]. Corros. Sci., 2021, 188: 109549
[29] Wu W, Zhu L L, Chai P L, et al. Atmospheric corrosion behavior of Nb- and Sb-added weathering steels exposed to the South China Sea [J]. Int. J. Miner. Metall. Mater., 2022, 29: 2041
[30] Arafin M A, Szpunar J A. Effect of bainitic microstructure on the susceptibility of pipeline steels to hydrogen induced cracking [J]. Mater. Sci. Eng., 2011, 528A: 4927
[31] Kumnorkaew T, Lian J, Uthaisangsuk V, et al. Effect of ausforming on microstructure and hardness characteristics of bainitic steel [J]. J. Mater. Res. Technol., 2020, 9: 13365
doi: 10.1016/j.jmrt.2020.09.016
[32] Tian H Y, Wang X, Cui Z Y, et al. Electrochemical corrosion, hydrogen permeation and stress corrosion cracking behavior of E690 steel in thiosulfate-containing artificial seawater [J]. Corros. Sci., 2018, 144: 145
[33] Wang Z H, Huang Y H, Li J, et al. Effect of Nb on corrosion behavior of simulated weld HAZs of X80 pipeline steel in simulated seawater environments corresponding to shallow sea and deep sea [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 604
王子豪, 黄运华, 李 佳 等. Nb对X80钢焊接热影响区在模拟海水中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2016, 36: 604
doi: 10.11902/1005.4537.2016.177
[34] Jiang J B, Li N N, Li Q L, et al. Effect of Ca and Sb on the corrosion resistance of E690 steel in marine atmosphere environment [J]. Metals, 2023, 13: 826
[35] Wu W, Sun M H, Hong Y, et al. Field corrosion study of 690MPa grade Sb-containing high strength bridge steel in tropical oceanic environment [J]. Mater. Today Commun., 2023, 35: 105945
[36] Zhang T Y, Li Y L, Li X, et al. Integral effects of Ca and Sb on the corrosion resistance for the high strength low alloy steel in the tropical marine environment [J]. Corros. Sci., 2022, 208: 110708
[37] Zhang W H, Yang S W, Geng W T, et al. Corrosion behavior of the low alloy weathering steels coupled with stainless steel in simulated open atmosphere [J]. Mater. Chem. Phys., 2022, 288: 126409
[38] Morcillo M, Díaz I, Chico B, et al. Weathering steels: From empirical development to scientific design. A review [J]. Corros. Sci., 2014, 83: 6
[39] Tian H Y, Cui Z Y, Ma H, et al. Corrosion evolution and stress corrosion cracking behavior of a low carbon bainite steel in the marine environments: Effect of the marine zones [J]. Corros. Sci., 2022, 206: 110490
[40] Wu W, Wang Q Y, Yang L, et al. Corrosion and SCC initiation behavior of low-alloy high-strength steels microalloyed with Nb and Sb in a simulated polluted marine atmosphere [J]. J. Mater. Res. Technol., 2020, 9: 12976
[1] TONG Xiangyu, XU Weichen, WANG Xiutong, WANG Youqiang, DUAN Jizhou. Summary on Effect of Weling Techniques on Microstructure and Mechanical Properties of TC4 Ti-alloy Weld Jointis[J]. 中国腐蚀与防护学报, 2025, 45(5): 1161-1174.
[2] GUO Yaowei, AI Shimin, FANG Daran, LIN Xiaoping, YANG Lianwei, ZHENG Zhehao. Microstructure and Corrosion Resistance of High-pressure Solidified Mg-xAl (x = 3, 5, 7, 9, 12) Alloys[J]. 中国腐蚀与防护学报, 2025, 45(5): 1265-1276.
[3] LI Ping, SHI Huijie, PEI Jibin, WANG Zijian, CAO Tieshan, CHENG Congqian, ZHAO Jie. Impact of Nanosecond Pulsed Laser Irradiation on Electrochemical Corrosion Behavior of 17-4PH Stainless Steel[J]. 中国腐蚀与防护学报, 2025, 45(5): 1417-1424.
[4] YUE Rui, LIU Yongyong, YANG Lijing, ZHU Xinglong, CHEN Quanxin, A Naer, ZHANG Qingke, SONG Zhenlun. Effect of Laser Surface Remelting on Microstructure and Properties of Biodegradable Zn-0.4Mn Alloy[J]. 中国腐蚀与防护学报, 2025, 45(4): 1127-1134.
[5] ZHOU Qianyong, LAI Yang, LI Qian. Effect of Pickling Process on Corrosion Resistance of Double Cold-reduced Tinplate with Different Tin Coating Masses[J]. 中国腐蚀与防护学报, 2025, 45(4): 939-946.
[6] ZHANG Xiongbin, DANG En, YU Xiaojing, TANG Yufei, ZHAO Kang. Research Status and Progress on Corrosion Performance of Super Martensitic Stainless Steel for Oil and Gas Fields[J]. 中国腐蚀与防护学报, 2025, 45(4): 837-848.
[7] CHEN Yuqiang, RAN Guanglin, LU Dingding, HUANG Lei, ZENG Liying, LIU Yang, ZHI Qian. Effect of Cyclic Strengthening on Corrosion Behavior of 7075 Al-alloy[J]. 中国腐蚀与防护学报, 2025, 45(4): 1051-1060.
[8] RAN Renhao, SHAN Huilin, ZHANG Pengjie, WANG Dongmei, SI Jiajia, XU Guangqing, LV Jun. Preparation and Corrosion Resistance of Surface Mg-alloying NdFeB Magnets[J]. 中国腐蚀与防护学报, 2025, 45(4): 1117-1126.
[9] LI Mao, DENG Ke, CHEN Yanxiang, LIU Zhonghao, LI Shang, GUO Yuting, DONG Xuanpu, CAO Huatang. Influence of N2 Flow and Target-substrate Distance on Microstructure and Corrosion Resistance Properties of Multi-arc Ion Plated AlSiN Nano-composite Coatings[J]. 中国腐蚀与防护学报, 2025, 45(4): 1041-1050.
[10] LI Qiubo, SU Yizhe, WU Wei, ZHANG Junxi. Effect of Self-generated Magnetic Field Produced by Electric Current on Atmospheric Corrosion Behavior of Copper[J]. 中国腐蚀与防护学报, 2025, 45(4): 956-964.
[11] PENG Wenshan, XIN Yonglei, WEN Jieping, HOU Jian, SUN Mingxian. Effect of Variable- and Constant-Temperature on Corrosion Behavior of High Strength Steel under Polar Ice Cover[J]. 中国腐蚀与防护学报, 2025, 45(3): 821-826.
[12] ZHAO Lijia, CUI Xinyu, WANG Jiqiang, XIONG Tianying. Corrosion Behavior of Cold-sprayed B4C/Al Composite Coating in Boric Acid Solution[J]. 中国腐蚀与防护学报, 2025, 45(1): 164-172.
[13] WEI Kezheng, JIANG Wenlong, GONG Yiwei, QIU Xin, DING Hanlin, XIANG Chongchen, WANG Zijian. Effect of Aging Time on Precipitation of Second Phase and Corrosion Performance of Prismatic Plane of As-forged AZ80 Mg-alloy[J]. 中国腐蚀与防护学报, 2024, 44(6): 1557-1565.
[14] LU Tianai, JIANG Wenhao, WU Wei, ZHANG Junxi. Surface Modification of Corrosion-resistant Cast Iron Based on Functional Requirements of Grounding Materials[J]. 中国腐蚀与防护学报, 2024, 44(6): 1443-1453.
[15] YI Shuo, ZHOU Shengxuan, YE Peng, DU Xiaojie, XU Zhenlin, HE Yizhu. Microstructure and Corrosion Resistance of Cu-containing Fe-Mn-Cr-Ni Medium-entropy Alloy Prepared by Selective Laser Melting[J]. 中国腐蚀与防护学报, 2024, 44(6): 1589-1600.
No Suggested Reading articles found!