Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (5): 1309-1319    DOI: 10.11902/1005.4537.2024.347
Current Issue | Archive | Adv Search |
Corrosion Behavior of Cold Spray Cu-Ti Pseudo Alloy as Anti-fouling Material in Natural Seawater
GU Songlun1, ZHANG Fan2, HUANG Guosheng2(), JIANG Dan2, DONG Guojun1
1 Yantai Research Institute, Harbin Engineering University, Yantai 264000, China
2 National Key Laboratory of Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
Cite this article: 

GU Songlun, ZHANG Fan, HUANG Guosheng, JIANG Dan, DONG Guojun. Corrosion Behavior of Cold Spray Cu-Ti Pseudo Alloy as Anti-fouling Material in Natural Seawater. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1309-1319.

Download:  HTML  PDF(15506KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Herein, as the candidate material of anti-fouling, four Cu-Ti pseudo alloys with different Ti contents (mass fraction) of 0%, 5%, 10%, and 15% were prepared by cold spraying method, and their microstructure and composition were characterized by SEM, EDS, and XRD. Meanwhile their corrosion performance in natural seawater is assessed by means of electrochemical measurements, namely free corrosion potential and potentiodynamic polarization curve, scanning vibration electrode (SVET) micro electrochemical measurement and inductively coupled plasma emission spectrum analyzer. Results indicated that in natural seawater, Cu particles and Ti particles on the surface of the prepared pseudo alloy Cu-Ti anode can naturally form micro galvanic couples. With the increase of Ti mass fraction, the corrosion rate of the prepared pseudo alloy Cu-Ti anode is accelerated due to the increased number of micro galvanic cells composed of Cu and Ti particles. When the Ti mass fraction is 15%, the corrosion rate is the fastest, and the copper ion release rate increases by nearly ten times, reaching 280 μg/(cm2·d). This method can effectively accelerate the release of Cu ions from the Cu-Ti pseudo alloy materials and promote their anti-fouling effect.

Key words:  cold spray      pure copper      micro-galvanic corrosion      corrosion behavior      marine anti-fouling     
Received:  27 October 2024      32134.14.1005.4537.2024.347
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China(U2141251)
Corresponding Authors:  HUANG Guosheng, E-mail: huanggs@sunrui.net

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.347     OR     https://www.jcscp.org/EN/Y2025/V45/I5/1309

Fig.1  Morphologies of TUP2 (a) and TA2 (b) powders used in cold spraying
Fig.2  Size distributions of TUP2 powders (a) and TA2 powders (b)
Fig.3  Macroscopic morphologies of cold sprayed (a) and heat-treated (b) Cu-Ti pseudo alloys with different titanium contents
Fig.4  Surface micro-morphologies of cold sprayed Cu (a), Cu-5Ti (b), Cu-10Ti (c) and Cu-15Ti (d)
Fig.5  Comparisons of the actual and nominal contents of Ti in as-sprayed materials and raw powders, respectively
Fig.6  SEM image of Cu-10Ti pseudo alloy (a), EDS line scannings of Cu and Ti along the arrow direction denoted in Fig.6a (b), and corresponding mappings of Cu (c) and Ti (d)
Fig.7  Porosities of as-sprayed Cu, Cu-5Ti, Cu-10Ti and Cu-15Ti
Fig.8  XRD patterns of raw powders and cold-sprayed Cu-Ti materials after heat treatment
Fig.9  Corrosion morphologies of Cu (a), Cu-5Ti (b), Cu-10Ti (c) and Cu-15Ti (d) after immersion in natural seawater for 30 d
Fig.10  Schematic diagram of galvanic corrosion
Fig.11  XRD patterns of Cu-Ti pseudo alloys after 30 d immersion in natural seawater
Fig.12  Open circuit potentials of Cu-Ti pseudo alloys after immersion in natural seawater for 30 d
Fig.13  SVET spectra of Cu (a), Cu-5Ti (b), Cu-10Ti (c) and Cu-15Ti (d) at the initial stage of immersion in natural seawater
Fig.14  SVET profiles of Cu (a), Cu-5Ti (b), Cu-10Ti (c) and Cu-15Ti (d) immersed in natural seawater for 24 h
Fig.15  Release rates of copper ions from natural seawater for Cu-Ti pseudo alloys
[1] Li S, Feng K, Li J Y, et al. Marine antifouling strategies: emerging opportunities for seawater resource utilization [J]. Chem. Eng. J., 2024, 486: 149859
[2] Rubio D, Casanueva J F, Nebot E. Assessment of the antifouling effect of five different treatment strategies on a seawater cooling system [J]. Appl. Therm. Eng., 2015, 85: 124
[3] Kumar A, Al-Jumaili A, Bazaka O, et al. Functional nanomaterials, synergisms, and biomimicry for environmentally benign marine antifouling technology [J]. Mater. Horiz., 2021, 8: 3201
doi: 10.1039/d1mh01103k pmid: 34726218
[4] Cao S, Wang J D, Chen H S, et al. Progress of marine biofouling and antifouling technologies [J]. Chin. Sci. Bull., 2011, 56: 598
[5] Jin H C, Tian L M, Bing W, et al. Bioinspired marine antifouling coatings: status, prospects, and future [J]. Prog. Mater. Sci., 2022, 124: 100889
[6] Han X, Wu J H, Zhang X H, et al. The progress on antifouling organic coating: From biocide to biomimetic surface [J]. J. Mater. Sci. Technol., 2021, 61: 46
doi: 10.1016/j.jmst.2020.07.002
[7] Luo W H, Wang H T, Yu L, et al. Effect of Zn content on electrochemical properties of Al-Zn-In-Mg sacrificial anode alloy [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1071
罗维华, 王海涛, 于 林 等. Zn含量对Al-Zn-In-Mg牺牲阳极电化学性能的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 1071
doi: 10.11902/1005.4537.2022.356
[8] Duan J Z, Liu C, Liu H L, et al. Research progress of biofouling and its control technology in marine underwater facilities [J]. 2020, 44(8): 162
段继周, 刘 超, 刘会莲 等. 海洋水下设施生物污损及其控制技术研究进展 [J]. 海洋科学, 2020, 44(8): 162
[9] Chen J J. Research of the chlorine in the seawater electrolysis antifouling system [D]. Qingdao: Ocean University of China, 2006
陈佼骄. 电解海水防污系统中有效氯的研究 [D]. 青岛: 中国海洋大学, 2006
[10] Chen Y F, Li Z X, Wang H N, et al. Corrosion behavior of T2 copper in static artificial seawater [J]. Mater. Prot., 2018, 51(2): 14
陈云飞, 李争显, 王浩楠 等. T2紫铜在静态人造海水中的腐蚀行为 [J]. 材料保护, 2018, 51(2): 14
[11] Pang J, Liu X J, Liu N Z, et al. Galvanic corrosion of T2 Cu-alloy and Q235 steel in simulated beishan groundwater environment [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1435
庞 洁, 刘相局, 刘娜珍 等. T2铜合金和Q235钢在模拟北山地下水环境中的电偶腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1435
[12] Chen Y F, Li Z X, Liu L T, et al. Galvanic corrosion behavior of T2/TC4 galvanic couple in static artificial seawater [J]. Rare Met. Mater. Eng., 2019, 48: 1161
陈云飞, 李争显, 刘林涛 等. T2/TC4在静态人造海水中的电偶腐蚀行为 [J]. 稀有金属材料与工程, 2019, 48: 1161
[13] Tian J, Xu K, Hu J H, et al. Durable self-polishing antifouling Cu-Ti coating by a micron-scale Cu/Ti laminated microstructure design [J]. J. Mater. Sci. Technol., 2021, 79: 62
doi: 10.1016/j.jmst.2020.11.038
[14] Li W Y, Cao C C, Yang X W, et al. Cold spraying hybrid processing technology and its application [J]. J. Mater. Eng., 2019, 47(11): 53
李文亚, 曹聪聪, 杨夏炜 等. 冷喷涂复合加工制造技术及其应用 [J]. 材料工程, 2019, 47(11): 53
doi: 10.11868/j.issn.1001-4381.2019.000262
[15] Li T R, Li X, Liu C, et al. Principle and application of localized scanning electrochemical measurement technology [J]. Modern Chem. Res., 2024, (8): 14
李天瑞, 李 鑫, 刘 畅 等. 微区扫描电化学测试技术原理及其应用进展 [J]. 当代化工研究, 2024, (8): 14
[16] Milagre M X, Donatus U, Mogili N V, et al. Galvanic and asymmetry effects on the local electrochemical behavior of the 2098-T351 alloy welded by friction stir welding [J]. J. Mater. Sci. Technol., 2020, 45: 162
doi: 10.1016/j.jmst.2019.11.016
[17] Wu Y D, Lu J, Sun C C, et al. Progress of the additive manufacturing applications of cold spray technique [J]. Surf. Technol., 2024, 53(16): 19
吴应东, 卢 静, 孙澄川 等. 冷喷涂增材制造技术应用研究进展 [J]. 表面技术, 2024, 53(16): 19
[18] Huang G S, Wang H R, Li X B, et al. Deposition efficiency of low pressure cold sprayed aluminum coating [J]. Mater. Manuf. Process., 2018, 33: 1100
[19] Goldbaum D, Shockley J M, Chromik R R, et al. The effect of deposition conditions on adhesion strength of Ti and Ti6Al4V cold spray splats [J]. J. Therm. Spray Technol., 2012, 21: 288
[20] Yang J W, Li W Y, Xing C H, et al. Research progress in cold spraying of copper coating [J]. Mater. Prot., 2022, 55(1): 58
杨景文, 李文亚, 邢词皓 等. 冷喷涂铜涂层研究进展 [J]. 材料保护, 2022, 55(1): 58
[21] Sun Y J, Zhang J L, Zhai H M, et al. Corrosion behaviors cold spraying Zn-Al composite coating in 3.5wt.%NaCl solution [J]. J. Lanzhou Univ. Technol., 2023, 49(2): 17
孙永江, 张金玲, 翟海民 等. Zn-Al冷喷涂复合涂层耐3.5wt.%NaCl溶液腐蚀行为 [J]. 兰州理工大学学报, 2023, 49(2): 17
[22] Zeng Y H, Yang F F, Chen Z N, et al. Enhancing mechanical properties and corrosion resistance of nickel-aluminum bronze via hot rolling process [J]. J. Mater. Sci. Technol., 2021, 61: 186
doi: 10.1016/j.jmst.2020.05.024
[23] Gao Y B, Du X G, Wang Q W, et al. Corrosion behavior of copper in a simulated grounding condition in electric power grid [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 435
高义斌, 杜晓刚, 王启伟 等. 铜在电网接地工况下的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 435
doi: 10.11902/1005.4537.2022.098
[24] Wang K, Xu K W, Tian J J, et al. Tailoring the micro-galvanic dissolution behavior and antifouling performance through laminated-structured Cu-X composite coating [J]. J. Therm. Spray Technol., 2021, 30: 1566
[25] Li Z Q, Hu J Y, Qiu S W, et al. Analysis on galvanic corrosion behavior of TA2, BAl7-7-2-2 and 921A [J]. Dev. Appl. Mater., 2018, 33(6): 46
李志强, 胡靖元, 邱胜闻 等. 工业纯钛TA2、镍铝青铜BAl7-7-2-2与船用钢921A电偶腐蚀行为分析 [J]. 材料开发与应用, 2018, 33(6): 46
[26] Zhang X Y, Wang L D, Sun W, et al. Effect of corrosion products of pure iron on the corrosion behavior of pure iron and its mechanism [J]. Mater. Prot., 2021, 54(7): 30
张心宇, 王立达, 孙 文 等. 纯铁的腐蚀产物对纯铁腐蚀行为的影响及其机理研究 [J]. 材料保护, 2021, 54(7): 30
[27] Ding R, Li X B, Wang J, et al. Study on antifouling effect of cold spray Cu-Cu2O coating [J]. Paint Coat. Ind., 2013, 43(9): 1
丁 锐, 李相波, 王 佳 等. 冷喷涂Cu-Cu2O涂层防污性能研究 [J]. 涂料工业, 2013, 43(9): 1
[28] Elmas S, Skipper K, Salehifar N, et al. Cyclic copper uptake and release from natural seawater—a fully sustainable antifouling technique to prevent marine growth [J]. Environ. Sci. Technol., 2021, 55: 757
[29] Tian J J, Wang K, Xu K W, et al. Effect of coating composition on the micro-galvanic dissolution behavior and antifouling performance of plasma-sprayed laminated-structured Cu-Ti composite coating [J]. Surf. Coat. Technol., 2021, 410: 126963
[30] Teng L, Chen X. Research progress of galvanic corrosion in marine environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 531
滕 琳, 陈 旭. 海洋环境中金属电偶腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 531
[1] CAI Ketao, JI Lei, ZHANG Zhen, FENG Qiang, DENG Weilin, LAN Guihong, HE Sha, ZHAO Zhanyong, BAI Peikang. Corrosion Behavior of Mg-Gd-Y-Zn-Zr Alloy in NaCl and Na2SO4 Solutions[J]. 中国腐蚀与防护学报, 2025, 45(5): 1289-1299.
[2] FAN Shilin, DU Juan, YANG Shaodan, ZHOU Yanjun, SONG Kexing, ZHANG Guoshang, YUE Pengfei, YANG Ran, WANG Xiaojun. Corrosion Behavior of Cu-15Ni-8Sn Alloy in 3.5%NaCl Solution Containing S2-[J]. 中国腐蚀与防护学报, 2025, 45(5): 1408-1416.
[3] GAO Yunxia, HE Kun, ZHANG Ruiqian, LIANG Xue, WANG Xianping, FANG Qianfeng. Effect of Dissolved Oxygen on Long-term Corrosion of Domestic FeCrAl Based Alloys in High Temperature and High Pressure Waters[J]. 中国腐蚀与防护学报, 2025, 45(4): 1081-1088.
[4] DUAN Jingmin, DONG Yong, MIAO Dongmei, YANG Yujing, MAO Lingbo, ZHANG Zhengrong. Corrosion Behavior in Different Media and Mechanical Properties of Al0.5CoCrFeNi High-entropy Alloy After Heat Treatment[J]. 中国腐蚀与防护学报, 2025, 45(4): 983-994.
[5] ZHANG Shanshan, LIU Yuancai, XU Tiewei, YANG Fazhan. Effect of Build-up Direction and Annealing on Corrosion Properties of Selected Laser Melting Ti6Al4V Alloy[J]. 中国腐蚀与防护学报, 2025, 45(4): 995-1004.
[6] ZHAI Xiwei, LIU Shiyi, WANG Li, JIA Ruiling, ZHANG Huixia. Effect of Applied Load on Corrosion Behavior of 5383 Al-alloy Welded Joints[J]. 中国腐蚀与防护学报, 2025, 45(2): 515-522.
[7] ZHAO Lijia, CUI Xinyu, WANG Jiqiang, XIONG Tianying. Corrosion Behavior of Cold-sprayed B4C/Al Composite Coating in Boric Acid Solution[J]. 中国腐蚀与防护学报, 2025, 45(1): 164-172.
[8] YIN Jie, GAO Yonghao, YI Fang. Effect of Ag Micro-alloying on Microstructure and Corrosion Behavior of Mg-Zn-Ca Alloy[J]. 中国腐蚀与防护学报, 2024, 44(5): 1274-1284.
[9] YANG Haiyun, LIU Chunquan, XIONG Fen, CHEN Minna, XIE Yuelin, PENG Longsheng, SUN Sheng, LIU Haizhou. Research Progress on Preparation of Corrosion-resistant Coatings by Extreme High-speed Laser Material Deposition[J]. 中国腐蚀与防护学报, 2024, 44(4): 847-862.
[10] WU Hailiang, CHEN Yuqiang, HUANG Liang, GU Hongyu, SUN Hongbo, LIU Jiajun, WANG Naiguang, SONG Yufeng. Corrosion Behavior of Welded Partitions of 3003 Al-alloy Used for Radiators of High-speed Train[J]. 中国腐蚀与防护学报, 2024, 44(4): 1081-1088.
[11] WANG Yuxue, ZHU Aohong, WANG Liwei, CUI Zhongyu. Comparative Study on Corrosion Behavior of Two Novel Ni-Cr-Mo-V Steels in Simulated Seawater Environment[J]. 中国腐蚀与防护学报, 2024, 44(4): 918-926.
[12] ZHANG Chenglong, ZHANG Bin, ZHU Min, YUAN Yongfeng, GUO Shaoyi, YIN Simin. Corrosion Behavior of Medium Entropy CoCrNi-alloy in NH4Cl Solutions[J]. 中国腐蚀与防护学报, 2024, 44(3): 725-734.
[13] DENG Zhibin, HU Xiao, LIU Yingyan, YUE Hang, ZHANG Qian, TANG Haiping, LU Rui. Effect of Magnetic Field on Corrosion Behavior of L360 Pipeline Steel and Welded Joints in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(2): 471-479.
[14] XIONG Yiming, MEI Wan, WANG Zehua, YU Rui, XU Shiyao, WU Lei, ZHANG Xin. Corrosion Behavior of 5083 Al-alloy under Magnetic Field[J]. 中国腐蚀与防护学报, 2024, 44(1): 229-236.
[15] SONG Dongdong, WAN Hongxia, XU Dong, ZHOU Qian. Influence of Rolling on Corrosion Behavior of ZM5 Mg-alloy[J]. 中国腐蚀与防护学报, 2024, 44(1): 213-220.
No Suggested Reading articles found!