Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (5): 1265-1276    DOI: 10.11902/1005.4537.2024.333
Current Issue | Archive | Adv Search |
Microstructure and Corrosion Resistance of High-pressure Solidified Mg-xAl (x = 3, 5, 7, 9, 12) Alloys
GUO Yaowei1, AI Shimin1, FANG Daran1,2, LIN Xiaoping1,2(), YANG Lianwei1,2, ZHENG Zhehao1
1 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2 School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
Cite this article: 

GUO Yaowei, AI Shimin, FANG Daran, LIN Xiaoping, YANG Lianwei, ZHENG Zhehao. Microstructure and Corrosion Resistance of High-pressure Solidified Mg-xAl (x = 3, 5, 7, 9, 12) Alloys. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1265-1276.

Download:  HTML  PDF(28398KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Mg-xAl (x = 3, 5, 7, 9, 12, mass fraction, %) alloys were prepared using both atmospheric pressure solidification and high-pressure solidification methods. The microstructure and corrosion resistance of the alloys were investigated using electrochemical tests, SEM and XPS. The results indicated that, after high pressure solidification at 4 GPa, the desolvation transition was inhibited for the alloy, and the eutectic composition point and maximum solubility point shifted to the right. Compared to atmospheric pressure solidification, the maximum matrix solid solubility of the high-pressure solidified Mg-Al alloys increased by 0.38%-3.43%, while the content of the eutectic β-Mg17Al12 phase decreased by 0.1%-14.9%. Furthermore, high pressure solidification could effectively improve the morphology and distribution of β-Mg17Al12. As a result, the propensity for galvanic coupling corrosion in the high-pressure solidified alloys decreased, and their corrosion resistance was significantly enhanced. Among the high-pressure solidified alloys with different Al contents, the Mg-5Al and Mg-9Al alloys exhibited the best corrosion resistance, which may be attributed to the better protective effect of their surface corrosion products on the substrate.

Key words:  Mg-Al alloys      high pressure solidification      organization      corrosion resistance     
Received:  10 October 2024      32134.14.1005.4537.2024.333
ZTFLH:  T146.2  
Fund: National Natural Science Foundation of China(51675092);Natural Science Foundation of Hebei Province(E2022501001);Natural Science Foundation of Hebei Province(E2022501006)
Corresponding Authors:  LIN Xiaoping, E-mail: lxping3588@163.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.333     OR     https://www.jcscp.org/EN/Y2025/V45/I5/1265

Serial numberAlloy nameActual compositionMelting temperature / °C
1Mg-3AlMg-2.97Al870
2Mg-5AlMg-5.09Al850
3Mg-7AlMg-6.96Al830
4Mg-9AlMg-8.87Al810
5Mg-12AlMg-12.05Al800
Table 1  Compositions of Mg-xAl (x = 3, 5, 7, 9, 12, mass fraction, %) alloys
Fig.1  Schematic diagram of the CS-1V type six-sided top pressure machine (a) and assembly of the high-pressure solidification sample (b): 1-top hammer, 2-thermocouple, 3-talc, 4-conductive block, 5-graphite, 6-boron nitride, 7-sample
Fig.2  Effect of Al content (mass fraction ) on the microstructure of conventional cast Mg-Al alloys: (a) Mg-3Al, (b) Mg-5Al, (c) Mg-7Al, (d, e) Mg-9Al, (f) Mg-12Al
Fig.3  Effects of Al content on the amount of β-Mg17Al12 phase in Mg-Al alloys (a) and the solubility of Al in the matrix (b)
Fig.4  Effect of Al content (mass fraction ) on the microstructure of high-pressure solidified Mg-Al alloys: (a) Mg-3Al, (b) Mg-5Al, (c) Mg-7Al, (d, e) Mg-9Al, (f) Mg-12Al
Fig.5  Effect of high-pressure solidification on the hydrogen evolution rate of Mg-xAl (x = 3, 5, 7, 9, 12) alloys
Fig.6  Polarization curves of conventional cast (a) and high-pressure solidified (b) Mg-xAl (x = 3, 5, 7, 9, 12) alloys, variations of corrosion potential (Ecorr) and corrosion current density (Icorr) with Al content (c)
Fig.7  Nyquist plots of conventional cast Mg-3Al, Mg-5Al and Mg-7Al alloys (a), Mg-9Al and Mg-12Al alloys (b), and high-pressure (4 GPa) solidified Mg-xAl (x = 3, 5, 7, 9, 12) alloys (c)
Fig.8  Bode plots of conventional cast (a, c) and high-pressure solidified (b, d) Mg-xAl (x = 3, 5, 7, 9, 12) alloys: (a, b) frequency vs. phase angle curves, (c, d) frequency vs. impedance value curves
Fig.9  Polarization resistance (Rp) values of high-pressure solidified Mg-xAl (x = 3, 5, 7, 9, 12) alloys under different solidification pressures
Fig.10  Macroscopic corrosion morphologies of conventional cast Mg-xAl alloys: (a) Mg-3Al, (b) Mg-5Al, (c) Mg-7Al, (d) Mg-9Al, (e) Mg-12Al
Fig.11  Macroscopic corrosion morphologies of high-pressure solidified Mg-xAl alloys: (a) Mg-3Al, (b) Mg-5Al, (c) Mg-7Al, (d) Mg-9Al, (e) Mg-12Al
Fig.12  SEM corrosion morphologies of conventional cast Mg-xAl alloys: (a) Mg-3Al, (b) Mg-5Al, (c) Mg-7Al, (d) Mg-9Al, (e) Mg-12Al
Fig.13  SEM corrosion morphologies of high-pressure solidified Mg-xAl alloys after immersion in 3.5%NaCl solution for 2 h: (a) Mg-3Al, (b) Mg-5Al, (c) Mg-7Al, (d) Mg-9Al, (e, f) Mg-12Al
Fig.14  Surface and cross-sectional SEM morphologies, and EDS element mappings of conventional cast alloys Mg-3Al (a-c), Mg-5Al (d-f) and Mg-9Al (g-i), and high-pressure solidified alloys Mg-3Al (j-l), Mg-5Al (m-o) and Mg-9Al (p-r)
Fig.15  XPS spectra of conventional cast Mg-5Al (a1-a3) and high-pressure solidified Mg-5Al (b1-b3) and Mg-9Al (c1-c3) alloys soaked in 3.5%NaCl solution for 24 h
SampleMg 1sO 1sAl 2p
5%Al-100 kPa29.9766.213.81
5%Al-4 GPa33.2162.734.06
9%Al-4 GPa26.4465.847.73
Table 2  Surface chemical compositions of high-pressure solidified Mg-xAl (x = 5, 9) alloys
[1] Radha R, Sreekanth D. Insight of magnesium alloys and composites for orthopedic implant applications-a review [J]. J. Magnes. Alloy., 2017, 5: 286
[2] Zhang Z M, Yu J M, Xue Y, et al. Recent research and development on forming for large magnesium alloy components with high mechanical properties [J]. J. Magnes. Alloy., 2023, 11: 4054
[3] Li T, Song J F, Zhang A, et al. Progress and prospects in Mg-alloy super-sized high pressure die casting for automotive structural components [J]. J. Magnes. Alloy., 2023, 11: 4166
[4] Hsu Y, Lu Y P, Wang S Y, et al. Magnesium alloys in tumor treatment: current research status, challenges and future prospects [J]. J. Magnes. Alloy., 2023, 11: 3399
[5] Bai J Y, Yang Y, Wen C, et al. Applications of magnesium alloys for aerospace: a review [J]. J. Magnes. Alloy., 2023, 11: 3609
[6] Xiao Y T, Zhang X F, Wang C, et al. Recent advances in electrochemical performance of Mg-based electrochemical energy storage materials in supercapacitors: enhancement and mechanism [J]. J. Magnes. Alloy., 2024, 12: 35
[7] De Oliveira M C L, Da Silva R M P, Souto R M, et al. A review on the synergism between corrosion and fatigue of magnesium alloys: Mechanisms and processes on the micro-scale [J]. J. Magnes. Alloy., 2024, 12: 3062
[8] Xu C, Zhang Z Q, Dai P L, et al. Preparation and its effect of fibrous γ-Mg17Al12 eutectic phase on mechanical properties of Mg alloy [J]. Foundry, 2021, 70: 915
徐 畅, 张祝群, 代鹏林 等. 纤维状γ-Mg17Al12共晶相的制备及其对Mg合金力学性能的影响 [J]. 铸造, 2021, 70: 915
[9] Yin Z, He R H, Chen Y, et al. Effects of surface micro-galvanic corrosion and corrosive film on the corrosion resistance of AZ91-xNd alloys [J]. Appl. Surf. Sci., 2021, 536: 147761
[10] Ubeda C, Garces G, Adeva P, et al. The role of the beta-Mg17Al12 phase on the anomalous hydrogen evolution and anodic dissolution of AZ magnesium alloys [J]. Corros. Sci., 2020, 165: 108384
[11] Liu Z Q, He X X, Qi K, et al. Galvanic corrosion behavior for galvanic couple of AZ91D Mg-alloy/2002 Al-alloy in 0.5 mg/L NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1016
刘泽琪, 何潇潇, 祁 康 等. AZ91D Mg合金和2002铝合金在0.5 mg/L NaCl溶液中的电偶腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 1016
doi: 10.11902/1005.4537.2021.355
[12] Shao Z, Nishimoto M, Muto I, et al. Fabrication of a model specimen for understanding micro-galvanic corrosion at the boundary of α-Mg and β-Mg17Al12 [J]. J. Magnes. Alloy., 2023, 11: 137
[13] Yang Y, Deng Y C, Zhang R F, et al. Influence of β-Mg17Al12 and Al-Mn intermetallic compounds on the corrosion behaviour of cast and solution treated Mg-Al-Zn-Mn alloys [J]. Corros. Sci., 2023, 222: 111363
[14] Xu H Y, Li Z Y. Galvanic corrosion of AZ91D magnesium alloy [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 298
徐宏妍, 李智勇. AZ91D Mg合金电偶腐蚀的研究 [J]. 中国腐蚀与防护学报, 2013, 33: 298
[15] Song G L, Atrens A, Dargusch M. Influence of microstructure on the corrosion of diecast AZ91D [J]. Corros. Sci., 1998, 41: 249
[16] Yang J, Yi D Q, Deng S H, et al. Effect of trace Ce on the microstructure and corrosion resistance of AZ91 magnesium alloy [J]. J. Chin. Soc. Corros. Prot., 2008, 28: 205
杨 洁, 易丹青, 邓姝皓 等. 微量Ce对AZ91镁合金微观组织及耐蚀性的影响 [J]. 中国腐蚀与防护学报, 2008, 28: 205
[17] Woo S K, Suh B C, Kim H S, et al. Effect of Al addition on corrosion behavior of high-purity Mg in terms of processing history [J]. J. Magnes. Alloy., 2023, 11: 851
[18] Yang Z Q, Ma A B, Xu B Q, et al. Corrosion behavior of AZ91 Mg alloy with a heterogeneous structure produced by ECAP [J]. Corros. Sci., 2021, 187: 109517
[19] Wei K Z, Jiang W L, Gong Y W, et al. Effect of aging time on precipitation of second phase and corrosion performance of prismatic plane of as-forged AZ80 Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1557
魏珂正, 蒋文龙, 龚奕维 等. 时效时间对锻态AZ80镁合金第二相析出及柱面取向表面腐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2024, 44: 1557
doi: 10.11902/1005.4537.2024.183
[20] Esmaily M, Svensson J E, Fajardo S, et al. Fundamentals and advances in magnesium alloy corrosion [J]. Prog. Mater. Sci., 2017, 89: 92
[21] Chen J Y, Zheng H F, Zeng Y C. High pressure-a new technology of modern science [J]. Sci. Technol. Inf., 2000, (8): 22
陈晋阳, 郑海飞, 曾贻春. 高压——现代科学的一门新技术 [J]. 科技信息, 2000, (8): 22
[22] Jie J C, Zou C M, Brosh E, et al. Microstructure and mechanical properties of an Al-Mg alloy solidified under high pressures [J]. J. Alloy. Compd., 2013, 578: 394
[23] Ma P, Wei Z J, Jia Y D, et al. Effect of high pressure solidification on tensile properties and strengthening mechanisms of Al-20Si [J]. J. Alloy. Compd., 2016, 688: 88
[24] Lin X P, Dai P L, Xu C, et al. Solute redistribution and mechanism of structure refinement of Mg-Al alloy during solidification under high pressure [J]. J. Alloy. Compd., 2022, 910: 164777
[25] Wang Y T, Yuan X G, Yu B Y, et al. Research progress of amorphous alloys under high pressure conditions [J]. Mater. Rep., 2010, 24(suppl. 2) : 499
王耘涛, 袁晓光, 于宝义 等. 高压条件下非晶态合金的研究进展 [J]. 材料导报, 2010, 24(): 499
[26] Huang J F, Song G L. Research progress on corrosion testing and analysis of Mg-alloys [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 519
黄居峰, 宋光铃. 镁合金腐蚀测试与分析研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 519
doi: 10.11902/1005.4537.2023.185
[27] Ma Y Z, Wang D X, Li H X, et al. Microstructure, mechanical properties and corrosion behavior of quaternary Mg-1Zn-0.2Ca-xAg alloy wires applied as degradable anastomotic nails [J]. Trans. Nonferrous Met. Soc. China, 2021, 31: 111
[28] Chang F C, Song Y W, Dong K H, et al. Study on the synergistic effect of second phases and product films to significantly improve the corrosion resistance of Mg-Gd-Y-Nd alloy [J]. Corros. Sci., 2024, 237: 112304
[29] Qiu W, Yan R, Liu K D, et al. The semi-continuous (Mg, Al)2Ca second phase on Mg-Al-Ca-Mn alloys as an efficient anti-corrosion anode for Mg-air batteries [J]. J. Alloy. Compd., 2024, 990: 174387
[30] Bao L, Li K, Zheng J Y, et al. Surface characteristics and stress corrosion behavior of AA 7075-T6 aluminum alloys after different shot peening processes [J]. Surf. Coat. Technol., 2022, 440: 128481
[31] Chen Y W, Zhou J, Liu Y, et al. Research progress in corrosion mechanism and regulation of magnesium alloys [J]. Chin. J. Nonferrous Met, 2023, 33: 3152
陈雅薇, 周 济, 刘 勇 等. 镁合金腐蚀机制与调控研究进展 [J]. 中国有色金属学报, 2023, 33: 3152
[32] Kim J Y, Byeon J W. Quantitative relation of discontinuous and continuous Mg17Al12 precipitates with corrosion rate of AZ91D magnesium alloy [J]. Mater. Charact., 2021, 174: 111015
[1] LI Ping, SHI Huijie, PEI Jibin, WANG Zijian, CAO Tieshan, CHENG Congqian, ZHAO Jie. Impact of Nanosecond Pulsed Laser Irradiation on Electrochemical Corrosion Behavior of 17-4PH Stainless Steel[J]. 中国腐蚀与防护学报, 2025, 45(5): 1417-1424.
[2] FENG Yuqin, GUO Tonghan, YU Weihan, WU Wei, ZHANG Daquan. Influence of Sb on Corrosion Behavior of High-strength Structural Steels Exposed to Atmosphere at East Coast Region[J]. 中国腐蚀与防护学报, 2025, 45(5): 1300-1308.
[3] TONG Xiangyu, XU Weichen, WANG Xiutong, WANG Youqiang, DUAN Jizhou. Summary on Effect of Weling Techniques on Microstructure and Mechanical Properties of TC4 Ti-alloy Weld Jointis[J]. 中国腐蚀与防护学报, 2025, 45(5): 1161-1174.
[4] YUE Rui, LIU Yongyong, YANG Lijing, ZHU Xinglong, CHEN Quanxin, A Naer, ZHANG Qingke, SONG Zhenlun. Effect of Laser Surface Remelting on Microstructure and Properties of Biodegradable Zn-0.4Mn Alloy[J]. 中国腐蚀与防护学报, 2025, 45(4): 1127-1134.
[5] ZHOU Qianyong, LAI Yang, LI Qian. Effect of Pickling Process on Corrosion Resistance of Double Cold-reduced Tinplate with Different Tin Coating Masses[J]. 中国腐蚀与防护学报, 2025, 45(4): 939-946.
[6] ZHANG Xiongbin, DANG En, YU Xiaojing, TANG Yufei, ZHAO Kang. Research Status and Progress on Corrosion Performance of Super Martensitic Stainless Steel for Oil and Gas Fields[J]. 中国腐蚀与防护学报, 2025, 45(4): 837-848.
[7] CHEN Yuqiang, RAN Guanglin, LU Dingding, HUANG Lei, ZENG Liying, LIU Yang, ZHI Qian. Effect of Cyclic Strengthening on Corrosion Behavior of 7075 Al-alloy[J]. 中国腐蚀与防护学报, 2025, 45(4): 1051-1060.
[8] RAN Renhao, SHAN Huilin, ZHANG Pengjie, WANG Dongmei, SI Jiajia, XU Guangqing, LV Jun. Preparation and Corrosion Resistance of Surface Mg-alloying NdFeB Magnets[J]. 中国腐蚀与防护学报, 2025, 45(4): 1117-1126.
[9] LI Mao, DENG Ke, CHEN Yanxiang, LIU Zhonghao, LI Shang, GUO Yuting, DONG Xuanpu, CAO Huatang. Influence of N2 Flow and Target-substrate Distance on Microstructure and Corrosion Resistance Properties of Multi-arc Ion Plated AlSiN Nano-composite Coatings[J]. 中国腐蚀与防护学报, 2025, 45(4): 1041-1050.
[10] ZHAO Lijia, CUI Xinyu, WANG Jiqiang, XIONG Tianying. Corrosion Behavior of Cold-sprayed B4C/Al Composite Coating in Boric Acid Solution[J]. 中国腐蚀与防护学报, 2025, 45(1): 164-172.
[11] WEI Kezheng, JIANG Wenlong, GONG Yiwei, QIU Xin, DING Hanlin, XIANG Chongchen, WANG Zijian. Effect of Aging Time on Precipitation of Second Phase and Corrosion Performance of Prismatic Plane of As-forged AZ80 Mg-alloy[J]. 中国腐蚀与防护学报, 2024, 44(6): 1557-1565.
[12] LU Tianai, JIANG Wenhao, WU Wei, ZHANG Junxi. Surface Modification of Corrosion-resistant Cast Iron Based on Functional Requirements of Grounding Materials[J]. 中国腐蚀与防护学报, 2024, 44(6): 1443-1453.
[13] YI Shuo, ZHOU Shengxuan, YE Peng, DU Xiaojie, XU Zhenlin, HE Yizhu. Microstructure and Corrosion Resistance of Cu-containing Fe-Mn-Cr-Ni Medium-entropy Alloy Prepared by Selective Laser Melting[J]. 中国腐蚀与防护学报, 2024, 44(6): 1589-1600.
[14] MA Jinyao, DONG Nan, GUO Zhensen, HAN Peide. Effect of B and Ce Micro-alloying on Secondary Phase Precipitation and Corrosion Resistance of S31254 Super Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(6): 1610-1616.
[15] CHENG Yonghe, FU Junwei, ZHAO Maomi, SHEN Yunjun. Research Progress on Corrosion Resistance of High-entropy Alloys[J]. 中国腐蚀与防护学报, 2024, 44(5): 1100-1116.
No Suggested Reading articles found!