|
|
Microbial Corrosion of Polymer Flooding Oil Gathering/Transportation Pipeline |
ZHANG Weizhi1,2,3, FENG Siqiao4, SONG Xiaopeng5, LIU Aihua5, TANG Dezhi6, YAN Maocheng1( ), HAN En-Hou7 |
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2 School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China 3 Oil and Gas and New Energy Branch of China National Petroleum Corporation, Beijing 100007, China 4 Daqing Oilfield Design Institute Co., Ltd., Daqing 163712, China 5 Shandong Zhiben Safety Technology Co., Ltd., Jinan 250101, China 6 China National Petroleum Corporation Planning Institute, Beijing 100007, China 7 Institute of Corrosion Science and Technology, Guangzhou 250101, China |
|
Cite this article:
ZHANG Weizhi, FENG Siqiao, SONG Xiaopeng, LIU Aihua, TANG Dezhi, YAN Maocheng, HAN En-Hou. Microbial Corrosion of Polymer Flooding Oil Gathering/Transportation Pipeline. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 1098-1106.
|
Abstract Regarding the microbial corrosion issue in polymer flooding pipelines for oil fields, the corrosion behavior and patterns of pipeline steel in a polymer flooding environment containing anaerobic sulfate reducing bacteria (SRB) and aerobic iron bacteria (IOB) were assessed by means of electrochemical measurement, and characterization in surface morphology, composition and phase constutients of corrsion products. The results indicate that both SRB and IOB attend to adhere and grow on the surface of pipeline steel in polymer flooding media, and a loose microbial film can be seen on the steel surface, significantly affecting the corrosion electrochemical process of pipeline steel. In the early stage of biofilm growth in SRB and IOB environments, open circuit potential of the steel increased about 20 mV, indicating the physical barrier effect of extracellular polymeric EPS on electrochemical processes. The corrosion rate in IOB environment is relatively low, and the corrosion current density significantly increases in SRB and SRB/IOB environments. In the coexistence environment of SRB and IOB, IOB consumes dissolved oxygen to create an anaerobic environment for SRB, which is conducive to the growth of fixed SRB, thereby promoting cathodic and anodic reactions, transforming the corrosion form from non-uniform corrosion to localized corrosion, and forming corrosion pits with peculiar characteristics.
|
Received: 22 December 2024
32134.14.1005.4537.2024.404
|
|
Fund: National Natural Science Foundation of China(51471176) |
Corresponding Authors:
YAN Maocheng, E-mail: yanmc@imr.ac.cn
|
[1] |
National Energy Security Research Center. 2020 oil and gas field pipeline operation safety report [R]. NY2020-09, 2020
|
|
(国家能源安全研究中心. 2020年油气田管道运行安全报告 [R]. NY2020-09, 2020)
|
[2] |
Standnes D C, Skjevrak I. Literature review of implemented polymer field projects [J]. J. Petrol. Sci. Eng., 2014, 122: 761
|
[3] |
Cao X L, Ji Y F, Zhu Y W, et al. Research advance and technology outlook of polymer flooding [J]. Reserv. Eval. Dev., 2020, 10(6): 8
|
|
(曹绪龙, 季岩峰, 祝仰文 等. 聚合物驱研究进展及技术展望 [J]. 油气藏评价与开发, 2020, 10(6): 8)
|
[4] |
Liang W, Zhao X T, Han Y X, et al. Research progress on heat and salt resistance polymer flooding [J]. Special Oil Gas Reserv., 2010, 17(2): 11
|
|
(梁 伟, 赵修太, 韩有祥 等. 驱油用耐温抗盐聚合物研究进展 [J]. 特种油气藏, 2010, 17(2): 11)
|
[5] |
Ke N, Ni Y Y, He J Q, et al. Research progress of metal corrosion caused by extracellular polymeric substances of microorganisms [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 278
|
|
(柯 楠, 倪莹莹, 何嘉淇 等. 微生物胞外聚合物引起的金属腐蚀的研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 278)
|
[6] |
Puentes-Cala E, Tapia-Perdomo V, Espinosa-Valbuena D, et al. Microbiologically influenced corrosion: the gap in the field [J]. Front. Environ. Sci., 2022, 10: 924842
|
[7] |
Sharma T, Iglauer S, Sangwai J S. Silica nanofluids in an oilfield polymer polyacrylamide: Interfacial properties, wettability alteration, and applications for chemical enhanced oil recovery [J]. Ind. Eng. Chem. Res., 2016, 55: 12387
|
[8] |
Zahiri M G, Esmaeilnezhad E, Choi H J. Effect of polymer-graphene-quantum-dot solution on enhanced oil recovery performance [J]. J. Mol. Liq., 2022, 349: 118092
|
[9] |
Wu J J, Xu M, Wang P, et al. Impact of nitrate addition on EH40 steel corrosion in natural seawater [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 765
|
|
(吴佳佳, 徐 鸣, 王 鹏 等. 天然海水中硝酸盐的添加对EH40钢腐蚀的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 765)
doi: 10.11902/1005.4537.2023.150
|
[10] |
Qi Z H, Jiang T, Zhao M J, et al. Research progress on coatings of active control of microbiological contamination for aircraft fuel system [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 821
|
|
(戚震辉, 江 涛, 赵茂锦 等. 飞机燃油系统微生物污染主动防治涂层研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 821)
doi: 10.11902/1005.4537.2022.287
|
[11] |
Wu T Q, Yang P, Zhang M D, et al. Microbiologically induced corrosion of X80 pipeline steel in an acid soil solution: (Ⅱ) corrosion morphology and corrosion product analysis [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 353
|
|
(吴堂清, 杨 圃, 张明德 等. 酸性土壤浸出液中X80钢微生物腐蚀研究: (Ⅱ)腐蚀形貌和产物分析 [J]. 中国腐蚀与防护学报, 2014, 34: 353)
doi: 10.11902/1005.4537.2014.045
|
[12] |
Zhang H, Gao B W, Yan M C, et al. Corrosion behavior of X80 steel under dynamic DC interference and SRB [J]. Surf. Technol., 2022, 51: 330
|
|
(张 辉, 高博文, 闫茂成 等. 动态直流干扰和SRB共同作用下X80钢的腐蚀行为 [J]. 表面技术, 2022, 51: 330)
|
[13] |
Wu T Q, Ding W C, Zeng D C, et al. Microbiologically induced corrosion of X80 pipeline steel in an acid soil solution: (Ⅰ) electrochemical analysis [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 346
|
|
(吴堂清, 丁万成, 曾德春 等. 酸性土壤浸出液中X80钢微生物腐蚀研究: (Ⅰ)电化学分析 [J]. 中国腐蚀与防护学报, 2014, 34: 346)
doi: 10.11902/1005.4537.2014.044
|
[14] |
Mandal A. Chemical flood enhanced oil recovery: a review [J]. Int. J. Oil Gas Coal Technol., 2015, 9: 241
|
[15] |
Shu Y, Yan M C, Wei Y H, et al. Characteristics of SRB biofilm and microbial corrosion of X80 pipeline steel [J]. Acta Metall. Sin., 2018, 54: 1408
|
|
(舒 韵, 闫茂成, 魏英华 等. X80管线钢表面SRB生物膜特征及腐蚀行为 [J]. 金属学报, 2018, 54: 1408)
|
[16] |
Roberge P R. Corrosion Engineering: Principles and Practice [M]. New York: McGraw-Hill Education, 2008.
|
[17] |
Liu J L, Jia R, Zhou E Z, et al. Antimicrobial Cu-bearing 2205 duplex stainless steel against MIC by nitrate reducing Pseudomonas aeruginosa biofilm [J]. Int. Biodeterior. Biodegrad., 2018, 132: 132
|
[18] |
Aitken C M, Jones D M, Larter S R. Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs [J]. Nature, 2004, 431: 291
|
[19] |
Yu L B, Yan M C, Wang B B, et al. Microbial corrosion of Q235 steel in acidic red soil environment [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 10
|
|
(于利宝, 闫茂成, 王彬彬 等. 酸性土壤环境中Q235钢的微生物腐蚀行为 [J]. 中国腐蚀与防护学报, 2018, 38: 10)
doi: 10.11902/1005.4537.2017.009
|
[20] |
Yang X, Sun F Y, Chen M. Study on corrosion behavior of X100 pipeline steel in simulated solution of Changshu soil [J]. Corros. Prot. Petrochem. Ind., 2019, 36(6): 13
|
|
(杨 旭, 孙福洋, 陈 墨. X100管线钢在常熟土壤模拟溶液中的腐蚀行为研究 [J]. 石油化工腐蚀与防护, 2019, 36(6): 13)
|
[21] |
Liu H W, Gu T Y, Zhang G A, et al. Corrosion inhibition of carbon steel in CO2-containing oilfield produced water in the presence of iron-oxidizing bacteria and inhibitors [J]. Corros. Sci., 2016, 105: 149
|
[22] |
Yang G M, Gong M, Zheng X W, et al. A review of microbial corrosion in reclaimed water pipelines: Challenges and mitigation strategies [J]. Water Pract. Technol., 2022, 17: 731
|
[23] |
Sachan R, Singh A K. Corrosion of steel due to iron oxidizing bacteria [J]. Anti-Corros. Methods Mater., 2019, 66: 19
|
[24] |
Bao M T, Chen Q G, Li Y M, et al. Biodegradation of partially hydrolyzed polyacrylamide by bacteria isolated from production water after polymer flooding in an oil field [J]. J. Hazardous Mater., 2010, 184(1-3): 105
|
[25] |
Wang Y L, Guan F, Duan J Z, et al. Synergistic inhibition of rhamnolipid and 2,2-dibromo-3-hypoazopropionamide on microbiologically influenced corrosion of X80 pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1412
|
|
(王娅利, 管 方, 段继周 等. 鼠李糖脂与2,2-二溴-3-次氮基丙酰胺协同抑制X80管线钢的微生物腐蚀 [J]. 中国腐蚀与防护学报, 2024, 44: 1412)
doi: 10.11902/1005.4537.2024.051
|
[26] |
Beech I B, Sunner J. Biocorrosion: towards understanding interactions between biofilms and metals [J]. Curr. Opin. Biotechnol., 2004, 15: 181
|
[27] |
QI B M, Cui C W, Yuan Y X. Effects of iron bacteria on cast iron pipe corrosion and water quality in water distribution systems [J]. Int. J. Electrochem. Sci., 2016, 11: 545
|
[28] |
Huang Y, Liu S J, Jiang C Y. Microbiologically influenced corrosion and mechanisms [J]. Microbiol. China, 2017, 44: 1699
|
|
(黄 烨, 刘双江, 姜成英. 微生物腐蚀及腐蚀机理研究进展 [J]. 微生物学通报, 2017, 44: 1699)
|
[29] |
Li G Q, Li G F, Wang J Q, et al. Microbiologically influenced corrosion mechanism and protection of offshore pipelines [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 429
|
|
(李光泉, 李广芳, 王俊强 等. 临海管道微生物腐蚀损伤机制与防护 [J]. 中国腐蚀与防护学报, 2021, 41: 429)
doi: 10.11902/1005.4537.2020.133
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|