Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (4): 1098-1106    DOI: 10.11902/1005.4537.2024.404
Current Issue | Archive | Adv Search |
Microbial Corrosion of Polymer Flooding Oil Gathering/Transportation Pipeline
ZHANG Weizhi1,2,3, FENG Siqiao4, SONG Xiaopeng5, LIU Aihua5, TANG Dezhi6, YAN Maocheng1(), HAN En-Hou7
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
3 Oil and Gas and New Energy Branch of China National Petroleum Corporation, Beijing 100007, China
4 Daqing Oilfield Design Institute Co., Ltd., Daqing 163712, China
5 Shandong Zhiben Safety Technology Co., Ltd., Jinan 250101, China
6 China National Petroleum Corporation Planning Institute, Beijing 100007, China
7 Institute of Corrosion Science and Technology, Guangzhou 250101, China
Cite this article: 

ZHANG Weizhi, FENG Siqiao, SONG Xiaopeng, LIU Aihua, TANG Dezhi, YAN Maocheng, HAN En-Hou. Microbial Corrosion of Polymer Flooding Oil Gathering/Transportation Pipeline. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 1098-1106.

Download:  HTML  PDF(16170KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Regarding the microbial corrosion issue in polymer flooding pipelines for oil fields, the corrosion behavior and patterns of pipeline steel in a polymer flooding environment containing anaerobic sulfate reducing bacteria (SRB) and aerobic iron bacteria (IOB) were assessed by means of electrochemical measurement, and characterization in surface morphology, composition and phase constutients of corrsion products. The results indicate that both SRB and IOB attend to adhere and grow on the surface of pipeline steel in polymer flooding media, and a loose microbial film can be seen on the steel surface, significantly affecting the corrosion electrochemical process of pipeline steel. In the early stage of biofilm growth in SRB and IOB environments, open circuit potential of the steel increased about 20 mV, indicating the physical barrier effect of extracellular polymeric EPS on electrochemical processes. The corrosion rate in IOB environment is relatively low, and the corrosion current density significantly increases in SRB and SRB/IOB environments. In the coexistence environment of SRB and IOB, IOB consumes dissolved oxygen to create an anaerobic environment for SRB, which is conducive to the growth of fixed SRB, thereby promoting cathodic and anodic reactions, transforming the corrosion form from non-uniform corrosion to localized corrosion, and forming corrosion pits with peculiar characteristics.

Key words:  gathering pipeline      microbial corrosion      sulfate reducing bacteria      iron oxide bacteria      polymer flooding     
Received:  22 December 2024      32134.14.1005.4537.2024.404
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China(51471176)
Corresponding Authors:  YAN Maocheng, E-mail: yanmc@imr.ac.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.404     OR     https://www.jcscp.org/EN/Y2025/V45/I4/1098

Test groupTemperature / ℃Bacteria addition / volume fraction, %
SRB355% SRB inoculated solution + 5% IOB medium
IOB355% IOB inoculated solution + 5% SRB medium
SRB/IOB355% IOB inoculated solution + 5% SRB bacterial solution
Control355% SRB medium + 5% IOB medium
Table 1  Experiment conditions of temperature and microbial medium
Fig.1  Surface morphologies of 20 # steel after 14 d immersion in polymer flooding oil gathering media: (a) SRB, (b) IOB, (c) SRB/IOB, (d) Control
ElementSRBIOBSRB/IOBControl
Mass fraction / %Atomic fraction / %Mass fraction / %Atomic fraction / %Mass fraction / %Atomic fraction / %Mass fraction / %Atomic fraction / %
O9.4325.3913.4835.2215.0736.699.3826.55
Fe82.5363.6786.5264.7877.3553.9490.6273.45
S5.227.02--3.584.34--
P2.823.92--4.005.03--
Table 2  Surface chemical compositions of 20 # steel after 14 d immersion test in polymer flooding oil gathering media
Fig.2  Corrosion morphologies of 20# steel after 14 d immersion in polymer flooding oil gathering media: (a) SRB, (b) IOB, (c) SRB/IOB, (d) Control
Fig.3  Morphologies of pittings of 20# steel after 14 d immersion in the polymer oil gathering media: (a) SRB, (b) IOB, (c) SRB/IOB, (d) Control
Fig.4  Open-circuit potentials of 20# steel during immersion in the polymer flooding oil gathering media containing different microorganisms
Fig.5  Nyquist spectra (a1-d1), Bode spectra (a2-d2) and phase angle (a3-d3) of 20# steel in the polymer flooding oil gathering media containing SRB (a), IOB (b), SRB/IOB (c) and Control (d) microor-ganisms
Fig.6  Solution resistances (a) and polarization resistances (b) of 20# steel during immersion in the polymer flooding oil gathering media containing different microorganisms
Fig.7  Tafel plots of 20# steel after 14 d immersion in the polymer flooding oil gathering media containing different microorganisms
[1] National Energy Security Research Center. 2020 oil and gas field pipeline operation safety report [R]. NY2020-09, 2020
(国家能源安全研究中心. 2020年油气田管道运行安全报告 [R]. NY2020-09, 2020)
[2] Standnes D C, Skjevrak I. Literature review of implemented polymer field projects [J]. J. Petrol. Sci. Eng., 2014, 122: 761
[3] Cao X L, Ji Y F, Zhu Y W, et al. Research advance and technology outlook of polymer flooding [J]. Reserv. Eval. Dev., 2020, 10(6): 8
(曹绪龙, 季岩峰, 祝仰文 等. 聚合物驱研究进展及技术展望 [J]. 油气藏评价与开发, 2020, 10(6): 8)
[4] Liang W, Zhao X T, Han Y X, et al. Research progress on heat and salt resistance polymer flooding [J]. Special Oil Gas Reserv., 2010, 17(2): 11
(梁 伟, 赵修太, 韩有祥 等. 驱油用耐温抗盐聚合物研究进展 [J]. 特种油气藏, 2010, 17(2): 11)
[5] Ke N, Ni Y Y, He J Q, et al. Research progress of metal corrosion caused by extracellular polymeric substances of microorganisms [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 278
(柯 楠, 倪莹莹, 何嘉淇 等. 微生物胞外聚合物引起的金属腐蚀的研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 278)
[6] Puentes-Cala E, Tapia-Perdomo V, Espinosa-Valbuena D, et al. Microbiologically influenced corrosion: the gap in the field [J]. Front. Environ. Sci., 2022, 10: 924842
[7] Sharma T, Iglauer S, Sangwai J S. Silica nanofluids in an oilfield polymer polyacrylamide: Interfacial properties, wettability alteration, and applications for chemical enhanced oil recovery [J]. Ind. Eng. Chem. Res., 2016, 55: 12387
[8] Zahiri M G, Esmaeilnezhad E, Choi H J. Effect of polymer-graphene-quantum-dot solution on enhanced oil recovery performance [J]. J. Mol. Liq., 2022, 349: 118092
[9] Wu J J, Xu M, Wang P, et al. Impact of nitrate addition on EH40 steel corrosion in natural seawater [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 765
(吴佳佳, 徐 鸣, 王 鹏 等. 天然海水中硝酸盐的添加对EH40钢腐蚀的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 765)
doi: 10.11902/1005.4537.2023.150
[10] Qi Z H, Jiang T, Zhao M J, et al. Research progress on coatings of active control of microbiological contamination for aircraft fuel system [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 821
(戚震辉, 江 涛, 赵茂锦 等. 飞机燃油系统微生物污染主动防治涂层研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 821)
doi: 10.11902/1005.4537.2022.287
[11] Wu T Q, Yang P, Zhang M D, et al. Microbiologically induced corrosion of X80 pipeline steel in an acid soil solution: (Ⅱ) corrosion morphology and corrosion product analysis [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 353
(吴堂清, 杨 圃, 张明德 等. 酸性土壤浸出液中X80钢微生物腐蚀研究: (Ⅱ)腐蚀形貌和产物分析 [J]. 中国腐蚀与防护学报, 2014, 34: 353)
doi: 10.11902/1005.4537.2014.045
[12] Zhang H, Gao B W, Yan M C, et al. Corrosion behavior of X80 steel under dynamic DC interference and SRB [J]. Surf. Technol., 2022, 51: 330
(张 辉, 高博文, 闫茂成 等. 动态直流干扰和SRB共同作用下X80钢的腐蚀行为 [J]. 表面技术, 2022, 51: 330)
[13] Wu T Q, Ding W C, Zeng D C, et al. Microbiologically induced corrosion of X80 pipeline steel in an acid soil solution: (Ⅰ) electrochemical analysis [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 346
(吴堂清, 丁万成, 曾德春 等. 酸性土壤浸出液中X80钢微生物腐蚀研究: (Ⅰ)电化学分析 [J]. 中国腐蚀与防护学报, 2014, 34: 346)
doi: 10.11902/1005.4537.2014.044
[14] Mandal A. Chemical flood enhanced oil recovery: a review [J]. Int. J. Oil Gas Coal Technol., 2015, 9: 241
[15] Shu Y, Yan M C, Wei Y H, et al. Characteristics of SRB biofilm and microbial corrosion of X80 pipeline steel [J]. Acta Metall. Sin., 2018, 54: 1408
(舒 韵, 闫茂成, 魏英华 等. X80管线钢表面SRB生物膜特征及腐蚀行为 [J]. 金属学报, 2018, 54: 1408)
[16] Roberge P R. Corrosion Engineering: Principles and Practice [M]. New York: McGraw-Hill Education, 2008.
[17] Liu J L, Jia R, Zhou E Z, et al. Antimicrobial Cu-bearing 2205 duplex stainless steel against MIC by nitrate reducing Pseudomonas aeruginosa biofilm [J]. Int. Biodeterior. Biodegrad., 2018, 132: 132
[18] Aitken C M, Jones D M, Larter S R. Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs [J]. Nature, 2004, 431: 291
[19] Yu L B, Yan M C, Wang B B, et al. Microbial corrosion of Q235 steel in acidic red soil environment [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 10
(于利宝, 闫茂成, 王彬彬 等. 酸性土壤环境中Q235钢的微生物腐蚀行为 [J]. 中国腐蚀与防护学报, 2018, 38: 10)
doi: 10.11902/1005.4537.2017.009
[20] Yang X, Sun F Y, Chen M. Study on corrosion behavior of X100 pipeline steel in simulated solution of Changshu soil [J]. Corros. Prot. Petrochem. Ind., 2019, 36(6): 13
(杨 旭, 孙福洋, 陈 墨. X100管线钢在常熟土壤模拟溶液中的腐蚀行为研究 [J]. 石油化工腐蚀与防护, 2019, 36(6): 13)
[21] Liu H W, Gu T Y, Zhang G A, et al. Corrosion inhibition of carbon steel in CO2-containing oilfield produced water in the presence of iron-oxidizing bacteria and inhibitors [J]. Corros. Sci., 2016, 105: 149
[22] Yang G M, Gong M, Zheng X W, et al. A review of microbial corrosion in reclaimed water pipelines: Challenges and mitigation strategies [J]. Water Pract. Technol., 2022, 17: 731
[23] Sachan R, Singh A K. Corrosion of steel due to iron oxidizing bacteria [J]. Anti-Corros. Methods Mater., 2019, 66: 19
[24] Bao M T, Chen Q G, Li Y M, et al. Biodegradation of partially hydrolyzed polyacrylamide by bacteria isolated from production water after polymer flooding in an oil field [J]. J. Hazardous Mater., 2010, 184(1-3): 105
[25] Wang Y L, Guan F, Duan J Z, et al. Synergistic inhibition of rhamnolipid and 2,2-dibromo-3-hypoazopropionamide on microbiologically influenced corrosion of X80 pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1412
(王娅利, 管 方, 段继周 等. 鼠李糖脂与2,2-二溴-3-次氮基丙酰胺协同抑制X80管线钢的微生物腐蚀 [J]. 中国腐蚀与防护学报, 2024, 44: 1412)
doi: 10.11902/1005.4537.2024.051
[26] Beech I B, Sunner J. Biocorrosion: towards understanding interactions between biofilms and metals [J]. Curr. Opin. Biotechnol., 2004, 15: 181
[27] QI B M, Cui C W, Yuan Y X. Effects of iron bacteria on cast iron pipe corrosion and water quality in water distribution systems [J]. Int. J. Electrochem. Sci., 2016, 11: 545
[28] Huang Y, Liu S J, Jiang C Y. Microbiologically influenced corrosion and mechanisms [J]. Microbiol. China, 2017, 44: 1699
(黄 烨, 刘双江, 姜成英. 微生物腐蚀及腐蚀机理研究进展 [J]. 微生物学通报, 2017, 44: 1699)
[29] Li G Q, Li G F, Wang J Q, et al. Microbiologically influenced corrosion mechanism and protection of offshore pipelines [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 429
(李光泉, 李广芳, 王俊强 等. 临海管道微生物腐蚀损伤机制与防护 [J]. 中国腐蚀与防护学报, 2021, 41: 429)
doi: 10.11902/1005.4537.2020.133
[1] CHEN Qian, HUANG Wei, ZHANG Changhui, GUAN Aocheng, ZHANG Chen, YE Xiaopeng. Physics-guided Prediction of Corrosion Rate Inside Gathering and Transportation Pipelines and Explanatory Analysis[J]. 中国腐蚀与防护学报, 2025, 45(3): 720-730.
[2] WANG Yali, GUAN Fang, DUAN Jizhou, ZHANG Lina, YANG Zhengxian, HOU Baorong. Synergistic Inhibition of Rhamnolipid and 2, 2-dibromo-3-hypoazopropionamide on Microbiologically Influenced Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2024, 44(6): 1412-1422.
[3] GAO Qiuying, ZENG Wenguang, WANG Heng, LIU Yuancong, HU Junying. Effect of Fluid Scouring on Sulfate Reducting Bacteria Induced Corrosion of Pipeline Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1087-1093.
[4] MA Kaijun, WANG Mengmeng, SHI Zhenlong, CHEN Changfeng, JIA Xiaolan. Influence of Temperature on Microbial Induced Corrosion of Tank Bottom for Crude Oil Storage[J]. 中国腐蚀与防护学报, 2022, 42(6): 1051-1057.
[5] XU Ping, ZHAO Meihui, BAI Pengkai. Effect of Hydroxyethylidene Diphosphonic Acid on Iron Bacteria Induced Corrosion of Carbon Steel in Circulating Cooling Water[J]. 中国腐蚀与防护学报, 2022, 42(6): 988-994.
[6] LIU Jun, GENG Yongjuan, LI Shaochun, XU Ailing, HOU Dongshuai, LIU Ang, LANG Xiulu, CHEN Xu, LIU Guofeng. Protection Efficacy of TEOS/IBTS Coating on Microbial Fouling of Concrete in Marine Tidal Areas[J]. 中国腐蚀与防护学报, 2022, 42(1): 135-142.
[7] ZHAO Guoxian,HUANG Jing,XUE Yan. Corrosion Behavior of Materials Used for Surface Gathering and Transportation Pipeline in an Oilfield[J]. 中国腐蚀与防护学报, 2019, 39(6): 557-562.
[8] Xin LI,Xu CHEN,Wuqi SONG,Jiaxing YANG,Ming WU. Effect of pH Value on Microbial Corrosion Behavior of X70 Steel in a Sea Mud Extract Simulated Solution[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.
[9] Meng MEI, Hongai ZHENG, Huida CHEN, Ming ZHANG, Daquan ZHANG. Effect of Sulfate Reducing Bacteria on Corrosion Behavior of Cu in Circulation Cooling Water System[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[10] Yu TENG,Xu CHEN,Chuan HE,Yichuang WANG,Bing WANG. Effect of Microstructure on Corrosion Behavior of X70 Steel in 3.5%NaCl Solution with SRB[J]. 中国腐蚀与防护学报, 2017, 37(2): 168-174.
[11] Yalin LV,Bijuan ZHENG,Hongwei LIU,Fuping XIONG,Hongfang LIU,Yulong HU. Effect of Static Magnetic Field on Adhesion of Sulfate Reducing Bacteria Biofilms on 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2016, 36(6): 652-658.
[12] Jinheng LUO,Congmin XU,Dongping YANG. Stress Corrosion Cracking of X100 Pipeline Steel in Acid Soil Medium with SRB[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327.
[13] Boqiang SONG,Xu CHEN,Guiyang MA,Rui LIU. Effect of SRB on Corrosion Behavior of X70 Pipeline Steel in Near-neutral pH Solution[J]. 中国腐蚀与防护学报, 2016, 36(3): 212-218.
[14] ZHANG Fan, LIU Hongwei, CHEN Bi, LIU Hongfang. Corrosion Inhibition of Imidazoline for Carbon Steel in CO2-saturated Artificial Sewages with Sulfate Reduction Bacteria[J]. 中国腐蚀与防护学报, 2015, 35(2): 156-162.
[15] DUAN Dongxia, CHEN Xiguang, LIN Cunguo. 907A STEEL CORROSION IN ARTIFICIAL SULFATE REDUING BACTERIA BIOFILM[J]. 中国腐蚀与防护学报, 2011, 31(6): 453-456.
No Suggested Reading articles found!