|
|
Corrosion Behavior of Five Type of Power Grid Materials in Natural Coastal Environments |
LIU Sen1, HU Jiayuan1, WEN Xiaohan1, ZHU Renzheng2, LI Yanwei1, YANG Xiaojia2( ) |
1 Electric Power Research Institute of State Grid Zhejiang Electric Power Co., Ltd., Hangzhou 310014, China 2 Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China |
|
Cite this article:
LIU Sen, HU Jiayuan, WEN Xiaohan, ZHU Renzheng, LI Yanwei, YANG Xiaojia. Corrosion Behavior of Five Type of Power Grid Materials in Natural Coastal Environments. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 1107-1116.
|
Abstract The corrosion behavior of five commonly used power grid materials: carbon steel, zinc, galvanized steel, aluminum, and copper in natural environment of a typical coastal area at Zhejiang province was assessed via year-long exposure testing. Meanwhile, electrochemical performance, the surface and cross-sectional morphology and phase composition of the corrosion products were systematically analyzed. Additionally, by integrating four months of online corrosion current monitoring data, the corrosion rates and mechanisms of different materials were explored. The results indicate that the coastal environment significantly affects the corrosion of different materials, with noticeable differences in morphology and thickness of the rust scale. Copper and aluminum exhibited better corrosion resistance, while carbon steel and galvanized steel had higher corrosion rates, and zinc showed strong corrosion resistance in the initial stage.
|
Received: 28 August 2024
32134.14.1005.4537.2024.272
|
|
Fund: State Grid Anhui Electric Power Corporation Limited Technological Project(B311DS230002) |
Corresponding Authors:
YANG Xiaojia, E-mail: yangxiaojia@ustb.edu.cn
|
[1] |
Shen J, Wu K X, He X Y, et al. Evaluation and screening of atmospheric corrosion prediction algorithms of steels in different regions of China [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 939
|
|
(沈 坚, 吴柯娴, 何晓宇 等. 我国不同地区钢材大气腐蚀预测算法评估与筛选 [J]. 中国腐蚀与防护学报, 2024, 44: 939)
|
[2] |
Wang F Q, Wang Z G, Hai C, et al. Study on corrosion behavior of carbon steel in typical atmospheric environments in Dazhou [J]. Sichuan Electric Power Technol., 2024, 47(2): 89
|
|
(王方强, 王志高, 海 潮 等. 碳钢在达州典型大气环境下的腐蚀行为研究 [J]. 四川电力技术, 2024, 47(2): 89)
|
[3] |
Fan P C, Li J, Li L, et al. Corrosion and protection of metallic components in power grid equipment [J]. Heilongjiang Electric Power, 2021, 43: 307
|
|
(樊平成, 李 军, 李 龙 等. 电网设备金属部件的腐蚀与防护 [J]. 黑龙江电力, 2021, 43: 307)
|
[4] |
Zheng G W, Wu G W, Zheng G, et al. Failure analysis of steel structure coatings in a southeast coastal power plant [J]. China Coat., 2024, 39(3): 69
|
|
(郑观文, 吴国威, 郑 国 等. 东南沿海电厂钢结构涂层失效分析 [J]. 中国涂料, 2024, 39(3): 69)
|
[5] |
Wang J, Zhou X B, Xie Y, et al. Atmospheric corrosion of tin coating on T2 copper in Xiangtan, China [J]. Corros. Commun., 2024, 16: 52
|
[6] |
She X M, Peng J, Qiang Y J, et al. Recent advances in protective technologies against copper corrosion [J]. J. Mater. Sci. Technol., 2024, 201: 75
doi: 10.1016/j.jmst.2024.02.060
|
[7] |
Becker J, Pellé J, Rioual S, et al. Atmospheric corrosion of silver, copper and nickel exposed to hydrogen sulphide: a multi-analytical investigation approach [J]. Corros. Sci., 2022, 209: 110726
|
[8] |
Cheng Z Z. Experimental study on the corrosion resistance of copper slag concrete structures in high-salinity environments [J]. Fujian Build. Mater., 2023, (10): 14
|
|
(程珍珍. 高盐环境下铜矿渣混凝土结构抗腐蚀性能试验研究 [J]. 福建建材, 2023, (10): 14)
|
[9] |
Yan X H, Rong H S, Fan W J, et al. Effect and simulation of tensile stress on corrosion behavior of 7050 aluminum alloy in a simulated harsh marine environment [J]. Eng. Fail. Anal., 2024, 156: 107843
|
[10] |
Wang Y C, Huang G L, Huang H L, et al. High temperature corrosion behavior of ADC12 aluminum alloy in oxalic acid solution [J]. Corros. Sci., 2024, 232: 112028
|
[11] |
Qiao D G, Wang S L, Ning P D, et al. Corrosion resistance of zinc-magnesium-aluminium alloy coated steel in marine atmospheric environments [J]. Int. J. Electrochem. Sci., 2024, 19: 100705
|
[12] |
Jia L H, Li Y L, Huang L, et al. Research status of pitting corrosion of aluminum alloy [J]. Mater. Prot., 2022, 55(suppl.1) : 77
|
|
(荚利宏, 李逸伦, 黄 粒 等. 铝合金点蚀研究现状 [J]. 材料保护, 2022, 55(): 77)
|
[13] |
Che Y, Wang Q, Liu R X, et al. Corrosion behavior of hot-dip galvanized steel exposed to sulfur dioxide with moisture condensation [J]. Electroplat. Finish., 2020, 39: 1175
|
|
(车 瑶, 王 谦, 刘若溪 等. 凝露条件下热镀锌钢在二氧化硫气体中的腐蚀行为 [J]. 电镀与涂饰, 2020, 39: 1175)
|
[14] |
Liu Y, Ooi A, Tada E, et al. Electrochemical monitoring of the degradation of galvanized steel in simulated marine atmosphere [J]. Corros. Sci., 2019, 147: 273
doi: 10.1016/j.corsci.2018.11.013
|
[15] |
Zhao Q, Zhang J, Li L M, et al. Study on the atmospheric corrosion of galvanized steel in the anhui province power grid and its influence law [J]. Mater. Prot., 2024, 57(5): 191
|
|
(赵 骞, 张 洁, 李乐民 等. 安徽省电网用镀锌钢的大气腐蚀及其影响规律 [J]. 材料保护, 2024, 57(5): 191)
|
[16] |
Li Z W, Wu Q H, Zhou Y L, et al. Study on microstructure and electrochemical corrosion behavior of ζ-FeZn13 phase layer in hot-dip galvanized coating [J]. J. Alloy. Compd., 2024, 1003: 175569
|
[17] |
Jiang Z H, Chen T Q, Che Z C, et al. Effect of Ca-Mg microalloying on corrosion behavior and corrosion resistance of low alloy steel in the marine atmospheric environment [J]. Corros. Sci., 2024, 234: 112134
|
[18] |
Santa A C, Montoya D A, Tamayo J A, et al. Atmospheric corrosion of carbon steel: Results of one-year exposure in an andean tropical atmosphere in Colombia [J]. Heliyon, 2024, 10: e29391
|
[19] |
Gao L P, Li Z D, Huang Z Y. Research progress on marine corrosion performance of low alloy steel [J]. Metall. Funct. Mater., 2024, 31(3): 107
|
|
(高丽平, 李昭东, 黄贞益. 低合金钢海洋腐蚀性能研究进展 [J]. 金属功能材料, 2024, 31(3): 107)
|
[20] |
Wang J, Ning P D, Liu Q Q, et al. Corrosion behavior of galvanized steel in a simulated marine atmospheric environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 578
|
|
(王 瑾, 宁培栋, 刘倩倩 等. 模拟海洋大气环境中镀锌钢的腐蚀行为和机理 [J]. 中国腐蚀与防护学报, 2023, 43: 578)
|
[21] |
Vera R, Valverde B, Olave E, et al. Atmospheric corrosion and impact toughness of steels: case study in steels with and without galvanizing, exposed for 3 years in Rapa Nui Island [J]. Heliyon, 2023, 9: e17811
|
[22] |
Li B, He J H, Yu S W, et al. Corrosion behavior of galvanized steel in simulated coastal-industrial atmosphere [J]. Mater. Prot., 2022, 55(7): 128
|
|
(李 波, 何锦航, 余思伍 等. 镀锌钢在模拟沿海-工业大气中的腐蚀行为 [J]. 材料保护, 2022, 55(7): 128)
|
[23] |
Tao J, Wang Z G, Cai W H, et al. Study on corrosion resistance of hot-dip galvanized steel treated with a novel chromium-free passivator [J]. Jiangxi Metall., 2024, 44: 193
|
|
(陶 俊, 汪志刚, 蔡伟豪 等. 新型无铬钝化剂处理热浸镀锌钢的耐腐蚀性能研究 [J]. 江西冶金, 2024, 44: 193)
|
[24] |
Li X G, Zhang D W, Liu Z Y, et al. Materials science: share corrosion data [J]. Nature, 2015, 527: 441
|
[25] |
Sun M H, Xu X X, Li J W, et al. The influence of microstructures on the corrosion resistance of Cr-Mo-Sn low alloy steel in a tropical marine atmospheric [J]. Corros. Sci., 2024, 233: 112058
|
[26] |
Li G, Evitts R, Boulfiza M. Interactive effects of moisture, chloride, and carbonation on rebar corrosion in mortar [J]. Constr. Build. Mater., 2024, 440: 137440
|
[27] |
Gjertsen S, Seiersten M, Palencsar A, et al. The effect of weak acids on active corrosion rate in top-of-line corrosion [J]. Corros. Sci., 2024, 236: 112253
|
[28] |
Gejendhiran S, Karpagaraj A, Manivannan S, et al. Experimental study on mechanical, damping and corrosion properties of Inconel 718 hard-faced stainless steel 304 using cold metal transfer [J]. Eng. Fail. Anal., 2024, 156: 107871
|
[29] |
Stephanou M, Varughese M. Sequential estimation of Spearman rank correlation using Hermite series estimators [J]. J. Multivar. Anal., 2021, 186: 104783
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|