|
|
Effect of Aspergillus Aculeatus on Corrosion Behavior of 5A02 Al-alloy in Coastal Atmospheric Environment of Hainan Island |
SONG Xiaowen1, BAI Miaomiao2, CHEN Nana1, GAO Yihui3, FENG Yali1, LIU Qianqian1, ZHANG Yaoyao4, LU Lin1, WU Junsheng1, XIAO Kui1( ) |
1.Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China 2.Technical Center of Guangzhou Automobile Parts Co., Ltd., Guangzhou 510050, China 3.Twentieth Research Institute of China Electronics Technology Corporation, Xi'an 710068, China 4.School of Life Sciences, Central China Normal University, Wuhan 430079, China |
|
Cite this article:
SONG Xiaowen, BAI Miaomiao, CHEN Nana, GAO Yihui, FENG Yali, LIU Qianqian, ZHANG Yaoyao, LU Lin, WU Junsheng, XIAO Kui. Effect of Aspergillus Aculeatus on Corrosion Behavior of 5A02 Al-alloy in Coastal Atmospheric Environment of Hainan Island. Journal of Chinese Society for Corrosion and protection, 2025, 45(3): 631-642.
|
Abstract To study the influence of Aspergillus aculeatus on the corrosion behavior of Al-alloys, the single colony of Aspergillus aculeatus was isolated and screened from the petri dishes exposed to the coastal atmospheric environment of Hainan Island. The diluted spore suspension of Aspergillus aculeatus with concentration of 1 × 105 /mL was sprayed on the surface of 5A02 Al-alloy samples as groups inoculated with fungi, and sterile control groups were also set up, thereafter, which all placed in a 30 ℃ incubator for selected period of time, while the pH and acid concentration of the bacterial solution were measured intermittently. The test samples were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) in terms of their surface morphology and composition, and the growth of fungi was also observed. The corrosion potential of the Al-alloys surface under the action of Aspergillus aculeatus for different time were analyzed by electrochemical workstation and scanning Kelvin probe (SKP). Results indicated that Aspergillus aculeatus caused localized corrosion of the Al-alloy samples, their corrosion products mainly composed of AlO(OH), Al2O3, and MgO. The metabolic activities of Aspergillus aculeatus produced various organic acids, primarily oxalic acid, leading to a trend of decreasing and then increasing in the surrounding pH, thereby promoting the corrosion of the Al-alloy. The range of potential change of the group with fungi was greater, with overall potentials more negative than that of the sterile group. The potential of the group with fungi, initially increased and then decreased with time. The corrosion mechanisms primarily involved fungi metabolite corrosion and oxygen-concentration cell corrosion, while the chloride ions play a role in facilitating the growth of fungi and accelerating the corrosion.
|
Received: 25 June 2024
32134.14.1005.4537.2024.191
|
|
Fund: National Natural Science Foundation of China(51971032) |
Corresponding Authors:
XIAO Kui, E-mail: xiaokui@ustb.edu.cn
|
[1] |
Wang X N, Chen X M, Huan P C, et al. Review of laser-arc hybrid welding process of aluminum alloys for new energy vehicles (Invited) [J]. Chin. J. Lasers, 2024, 51: 0402102
|
|
王晓南, 陈夏明, 环鹏程 等. 新能源汽车用铝合金激光-电弧复合焊接研究进展(特邀) [J]. 中国激光, 2024, 51: 0402102
|
[2] |
Li D Q. Corrosion resistance of marine aluminum alloy and its application on ships and warships [J]. Alum. Fabr., 2023, (6): 7
|
|
李德奇. 海洋铝合金的抗蚀性及其在舰船上的应用 [J]. 铝加工, 2023, (6): 7
|
[3] |
Wang Z Q, Xue H, Li J M, et al. Research progress and applications of conductive aluminum alloys used in transportation [J]. Mod. Transp. Metall. Mater., 2024, 4(1): 11
|
|
王志琪, 薛 昊, 李佳铭 等. 交通运输用导电铝合金的应用现状及研究进展 [J]. 现代交通与冶金材料, 2024, 4(1): 11
|
[4] |
Zhao W B, Chang W J, Dai H F, et al. Chemical constituents from marine-derived fungus Aspergillus insulicola [J]. Chin. J. Mar. Drugs, 2023, 42(6): 61
|
|
赵伟博, 畅文军, 戴好富 等. 深海曲霉属真菌Aspergillus insulicola的化学成分研究 [J]. 中国海洋药物, 2023, 42(6): 61
|
[5] |
Liang H Q, Chen W F, Fan Y K, et al. Research progress on the secondary metabolites and activities of endophytic fungi of genus Aspergillus and Trichoderma from mangroves [J]. J. Trop. Oceanogr., 2023, 42(4): 12
|
|
梁寒峭, 陈文凤, 范益铠 等. 红树林来源曲霉属和木霉属内生真菌次生代谢产物及活性研究进展 [J]. 热带海洋学报, 2023, 42(4): 12
|
[6] |
Wang Y, Zhang Y Q, Xu Z F, et al. Study on the diketopiperazines from the Lumnitzera littorea-derived fungus Aspergillus terreus HT-1 [J]. Chin. J. Mar. Drugs, 2022, 41(6): 10
|
|
王 越, 张玉琴, 徐喆菲 等. 红榄李内生真菌Aspergillus terreus HT-1二酮哌嗪类次级代谢产物研究 [J]. 中国海洋药物, 2022, 41(6): 10
|
[7] |
Huang Y, Liu S J, Jiang C Y. Microbiologically influenced corrosion and mechanisms [J]. Microbiol. China, 2017, 44: 1699
|
|
黄 烨, 刘双江, 姜成英. 微生物腐蚀及腐蚀机理研究进展 [J]. 微生物学通报, 2017, 44: 1699
|
[8] |
Xu D K, Li Y C, Song F M, et al. Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis [J]. Corros. Sci., 2013, 77: 385
|
[9] |
Song B Q, Chen X, Ma G Y, et al. Effect of SRB on corrosion behavior of X70 pipeline steel in near-neutral pH solution [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 212
|
|
宋博强, 陈 旭, 马贵阳 等. SRB对X70管线钢在近中性pH溶液中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2016, 36: 212
doi: 10.11902/1005.4537.2015.116
|
[10] |
Mei M, Zheng H A, Gao Y, et al. Effect of iron bacteria on corrosion behavior of 20 carbon steel in circulation cooling system [J]. Mater. Prot., 2017, 50(1): 26
|
|
梅 朦, 郑红艾, 高 阳 等. 循环冷却水含铁细菌对20碳钢管壁腐蚀行为的影响 [J]. 材料保护, 2017, 50(1): 26
|
[11] |
Yao R, Zhang Q L, Qin F L, et al. Effect of iron bacteria on corrosion behavior of J55 steel [J]. Corros. Prot., 2016, 37: 206
|
|
姚 蓉, 张秋利, 秦芳玲 等. 铁细菌对J55钢腐蚀行为的影响 [J]. 腐蚀与防护, 2016, 37: 206
|
[12] |
Deen K M, Yousaf M, Afzal N, et al. Microbiological influenced corrosion attack by Bacillus Megaterium bacteria on Al-Cu alloy [J]. Mater. Technol., 2014, 29: 269
|
[13] |
Javed M A, Stoddart P R, Wade S A. Corrosion of carbon steel by sulphate reducing bacteria: Initial attachment and the role of ferrous ions [J]. Corros. Sci., 2015, 93: 48
|
[14] |
Chen N N, Liu Q Q, Feng Y L, et al. Microbial corrosion behavior and mechanism of 5A06 aluminum alloy under low dose proton radiation [J]. J. Mater. Res. Technol., 2023, 27: 4533
|
[15] |
Jirón-Lazos U, Corvo F, De la Rosa S C, et al. Localized corrosion of aluminum alloy 6061 in the presence of Aspergillus niger [J]. Int. Biodeter. Biodegrad., 2018, 133: 17
|
[16] |
Guan F, Duan J Z, Zhai X F, et al. Interaction between sulfate-reducing bacteria and aluminum alloys—Corrosion mechanisms of 5052 and Al-Zn-In-Cd aluminum alloys [J]. J. Mater. Sci. Technol., 2020, 36: 55
doi: 10.1016/j.jmst.2019.07.009
|
[17] |
Shen Y Y, Dong Y H, Yang Y, et al. Study of pitting corrosion inhibition effect on aluminum alloy in seawater by biomineralized film [J]. Bioelectrochemistry, 2020, 132: 107408
|
[18] |
Yang L, Lübeck M, Lübeck P S. Aspergillus as a versatile cell factory for organic acid production [J]. Fungal Biol. Rev., 2017, 31: 33
|
[19] |
Dezam A P G, Vasconcellos V M, Lacava P T, et al. Microbial production of organic acids by endophytic fungi [J]. Biocatal. Agric. Biotechnol., 2017, 11: 282
|
[20] |
Yousef A E, Marth E H. Growth and synthesis of aflatoxin by Aspergillus parasiticus in the presence of sorbic acid [J]. J. Food Prot., 1981, 44: 736
doi: 10.4315/0362-028X-44.10.736
pmid: 30856758
|
[21] |
Yang W Z, Tu J, Liu N, et al. Advances in signal regulation and detection strategies for autophagy in fungal cells [J]. Acta Pharm. Sin., 2020, 55: 1431
|
|
杨万镇, 涂 杰, 刘 娜 等. 真菌细胞自噬的信号调节和检测策略研究进展 [J]. 药学学报, 2020, 55: 1431
|
[22] |
Chen J, Chu J, Zhuang Y P, et al. Correlation between organic acids accumulation and biosynthesis of avermectin [J]. J. East China Univ. Sci. Technol. (Nat. Sci. Ed.), 2005, 31: 731
|
|
谌 颉, 储 炬, 庄英萍 等. 阿维菌素发酵过程有机酸积累规律与生物合成的关系 [J]. 华东理工大学学报(自然科学版), 2005, 31: 731
|
[23] |
Zhang Y X, Chen C Y, Liu H W, et al. Research progress on mold corrosion of aluminum alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 13
|
|
张雨轩, 陈翠颖, 刘宏伟 等. 铝合金霉菌腐蚀研究进展 [J]. 腐蚀与防护学报, 2021, 41: 13
|
[24] |
Lu J J, Wan Y J, Fu Y Q. Advances in production of organic acid by rhizopus sp.integrated with in-situ product separation process [J]. J. Taizhou Univ., 2012, 34(6): 27
|
|
陆君洁, 万永军, 付永前. 根霉菌反应分离耦合生产有机酸的研究进展 [J]. 台州学院学报, 2012, 34(6): 27
|
[25] |
Xu P, Zhao M H, Fu X, et al. Effect of chloride ions on the corrosion behavior of carbon steel in an iron bacteria system [J]. RSC Adv., 2022, 12: 15158
doi: 10.1039/d2ra02410a
pmid: 35702434
|
[26] |
Qian H C, Zhang J T, Cui T Y, et al. Influence of NaCl concentration on microbiologically influenced corrosion of carbon steel by halophilic archaeon Natronorubrum tibetense [J]. Bioelectrochemistry, 2021, 140: 107746
|
[27] |
Feng Y L, Li X M, Zhao Y, et al. Corrosion behaviour of copper under the action of chlorine-containing thin liquid film and Aspergillus versicolor [J]. Surf. Technol., 2022, 51(9): 178
|
|
冯亚丽, 李雪鸣, 赵 永 等. 铜在含氯薄液膜和杂色曲霉作用下的腐蚀行为 [J]. 表面技术, 2022, 51(9): 178
|
[28] |
Yang B, Zhong W A, Tang G J, et al. Application progress of corrosion protection for electronic and electrical equipment in coastal space launch sites [J]. Corros. Prot., 2022, 43(3): 1
|
|
杨 波, 钟文安, 唐功建 等. 滨海发射场电子电气设备腐蚀防护应用进展 [J]. 腐蚀与防护, 2022, 43(3): 1
|
[29] |
Planý M, Pinzari F, Šoltys K, et al. Fungal-induced atmospheric iron corrosion in an indoor environment [J]. Int. Biodeter. Biodegrad., 2021, 159: 105204
|
[30] |
Zou S W, Xiao K, Dong C F, et al. Effect of mold on corrosion behavior of immersion silver finished printed circuit board [J]. Sci. Technol. Rev., 2012, 30(11): 21
doi: 10.3981/j.issn.1000-7857.2012.11.001
|
|
邹士文, 肖 葵, 董超芳 等. 霉菌对化学浸银处理印制电路板腐蚀行为影响 [J]. 科技导报, 2012, 30(11): 21
|
[31] |
Guo H W. A simple algorithm for fitting a Gaussian function [DSP tips and tricks] [J]. IEEE Signal Process. Mag., 2011, 28: 134
|
[32] |
Miečinskas P, Leinartas K, Uksienė V, et al. QCM study of microbiological activity during long-term exposure to atmosphere—aluminium colonisation by Aspergillus Niger [J]. J. Solid State Electrochem., 2007, 11: 909
|
[33] |
He J Q, Tan Y, Liu H X, et al. Extracellular polymeric substances secreted by marine fungus Aspergillus terreus: Full characterization and detailed effects on aluminum alloy corrosion [J]. Corros. Sci., 2022, 209: 110703
|
[34] |
Cui T Y, Qian H C, Lou Y T, et al. Single-cell level investigation of microbiologically induced degradation of passive film of stainless steel via FIB-SEM/TEM and multi-mode AFM [J]. Corros. Sci., 2022, 206: 110543
|
[35] |
Dong Y Q, Feng D Q, Song G L, et al. The effect of a biofilm-forming bacterium Tenacibaculum mesophilum D-6 on the passive film of stainless steel in the marine environment [J]. Sci. Total Environ., 2022, 815: 152909
|
[36] |
Wang J L, Xiong F P, Liu H W, et al. Study of the corrosion behavior of Aspergillus niger on 7075-T6 aluminum alloy in a high salinity environment [J]. Bioelectrochemistry, 2019, 129: 10
|
[37] |
Qu Q, Li S L, Li L, et al. Adsorption and corrosion behaviour of Trichoderma harzianum for AZ31B magnesium alloy in artificial seawater [J]. Corros. Sci., 2017, 118: 12
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|