Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (5): 957-970    DOI: 10.11902/1005.4537.2022.282
Current Issue | Archive | Adv Search |
Review on Erosion-wear and Protection of Heat Exchange Surface in Power Station Boilers
LI Haiyan1, LIU Huan1(), WANG Geyi1, ZHANG Xiuju1, CHEN Tongzhou2, YU Yun1, YAO Hong1
1.School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2.Wuhan Research Institute of Materials Protection, Wuhan 430030, China
Download:  HTML  PDF(5869KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Power plant boilers are the key equipment for thermal power generation. During the combustion process, under the impact of the gas-solid two-phase flow of flue gas and fly ash, the heat exchange tubes of the boiler are prone to erosion-wear damage. The deterioration or even explosion of tubes seriously threatens the safe and stable operation of the power plant. In this paper, the causes of erosion, failure mechanism of heat exchange surfaces and prediction models of erosion rate were reviewed, including the cutting wear/deformation wear caused by fly ash in the furnace and the calculation model of the corrosion rate by considering various erosion parameters. Based on this, according to the specific environment of heat exchange surfaces in boilers, the influence of fly ash characteristics (shape, particle size and hardness), tube materials (carbon steel/alloy steel), and the service environment of heat exchange surfaces (the flow rate of flue gas in furnace, erosion speed/angle of fly ash, tube surface temperature) on the erosion-wear damage was summarized in detail. It is believed that erosion speed and tube surface temperature are the most important factors affecting erosion damage. Furthermore, from the perspective of alleviating erosion-wear, the research status of adding anti-erosion components and erosion-resistant coating materials on heat exchange surfaces was also reviewed. It was proposed that the main development directions of anti-erosion measures were to optimize the structure of heat exchange surfaces through flow field simulation and to apply WC-Co/Cr2C3-NiCr cermet coatings. At the same time, it was also pointed out that to clearly understand the relationship between the cost and protection effect of coatings, and further to optimize the coating preparation process, so that to reduce costs could provide an important economic guidance for the utilization of coatings. This review can provide a reference for the research on erosion-wear of heat exchange surfaces in boilers, as well as the development and application of protective measures.

Key words:  erosion      abrasion mechanism      factors affecting erosion      anti-erosion coatings      boiler      heat exchange surface     
Received:  21 September 2022      32134.14.1005.4537.2022.282
ZTFLH:  TG174.4  
Fund: National Key Research and Development Program of China(2018YFC1901302)
Corresponding Authors:  LIU Huan, E-mail: huanliu@hust.edu.cn   

Cite this article: 

LI Haiyan, LIU Huan, WANG Geyi, ZHANG Xiuju, CHEN Tongzhou, YU Yun, YAO Hong. Review on Erosion-wear and Protection of Heat Exchange Surface in Power Station Boilers. Journal of Chinese Society for Corrosion and protection, 2023, 43(5): 957-970.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.282     OR     https://www.jcscp.org/EN/Y2023/V43/I5/957

Fig.1  Schematic diagrams of erosion wear mechanism[45]: (a) cutting wear, (b) deformation wear
NumberCalculation formulaMeaning of symbolsReferences
1E=Kx4.95ρmρp1/2V3sin3βHv3/2K: erosion constant; x: mass fraction of Si in the ash;ρm : density of mild steel; ρp : average density of ash particles; V: ash particle velocity; β: impingement angle;Hv : Vickers hardness number.[52]
2E=j=12KjCpjfβjUinjg(Dp)hThωjj=1, 2, represent polygon-shaped and spherical particles, respectively; K: erosion constant;Cp : particulate concentration; β: impact angle, Ui: impact velocity; Dp : particle size; Th : homologous temperature ratio; ω: chemical composition of fly-ash particles[53]
3

Eα=sin αn1(1+Hv1-sin α)n2E90

E90=K(aHv)k1b(vv')k2(DD')k3

α: impact angle; Hv : Vickers hardness number; n1、n2、K、k1k2、k3 : indices and constants determined by the target material hardness, particle characteristics and erosion conditions.[54, 55]
Table 1  Prediction models of erosion and wear
Fig.2  Geometrical morphologies of fly ash particles: (a) rod-shaped, (b) polygon-shaped, (c) near-spherical
SampleSiO2Al2O3Fe2O3CaOMgONa2OK2O
Coal fly ash[24, 67~71]25.2-69.017.7-55.02.3-19.31.1-32.50.2-9.30.2-12.60.6-4.4
MSWI fly ash[34, 72~74]3.0-340.5-16.30.5-9.114.8-48.30.4-8.12.2-12.61.8-15.9
Table 2  Compositions of coal fly ash and MSWI fly ash
Fig.3  Variations of erosion rate with particle velocity during 30° erosion and 90° erosion[79]
Fig.4  Correlation between erosion rate and wall temperature[103]
Fig.5  Velocity vector distributions of particles around the anti-wear beam at various h0-hs-S (mm): (a) 20-14-3; (b) 20-14-9; (c) 20-14-15 (h0-height of the anti-wear beam on the wall; hs-height of the anti-wear beam in the furnace; S-width of the anti-wear beam)[20]
Fig.6  Morphologies of heat exchange tubes: (a) the damaged wall by erosion; (b) top surface of FMI-3 coating (FeAlCrB) after 13 a period of exposure[118]
Fig.7  Proportions of materials and preparation techno-logies of anti-wear coatings: (a) materials; (b) technologies[4, 11, 24, 121~143]
1 National Bureau of Statistics. China Statistical Yearbook [M]. Beijing: China Statistics Press, 2019
国家统计局. 中国统计年鉴 [M]. 北京: 中国统计出版社, 2019
2 Hossain M N, Ghosh K, Manna N K. Two-phase thermo-hydraulic model of a 210 MW thermal power plant boiler for designing the riser-downcomer circuit [J]. Therm. Sci. Eng. Prog., 2020, 18: 100537
3 Zhang S P, Shen G Q, An L S, et al. Monitoring ash fouling in power station boiler furnaces using acoustic pyrometry [J]. Chem. Eng. Sci., 2015, 126: 216
doi: 10.1016/j.ces.2014.12.030
4 Hidalgo V H, Varela F J B, Menéndez A C, et al. A comparative study of high-temperature erosion wear of plasma-sprayed NiCrBSiFe and WC-NiCrBSiFe coatings under simulated coal-fired boiler conditions [J]. Tribol. Int., 2001, 34: 161
doi: 10.1016/S0301-679X(00)00146-8
5 Huttunen-Saarivirta E, Kinnunen H, Tuiremo J, et al. Erosive wear of boiler steels by sand and ash [J]. Wear, 2014, 317: 213
doi: 10.1016/j.wear.2014.06.007
6 Kang X Q. Studies on erosion resistance of high strength refractory castable at room temperature [D]. Xi’an: Xi’an University of Architecture and Technology, 2010
康晓庆. 高强耐火浇注料常温冲蚀磨损性能研究 [D]. 西安: 西安建筑科技大学, 2010
7 Li J J, Wu F F, Wu B. Erosion wear performance of AlCrN coating on titanium alloy substrate [J]. Surf. Technol., 2019, 48(2): 152
李巾杰, 吴凤芳, 吴 冰. 钛合金基体上AlCrN涂层的冲蚀磨损行为研究 [J]. 表面技术, 2019, 48(2): 152
8 Fan L H. Causes and preventive measures of economizer leakage in thermal power plant [J]. Chem. Enterpr. Manage., 2020, (10): 120
范立辉. 热电厂省煤器泄露的原因及预防措施 [J]. 化工管理, 2020, (10): 120
9 Wu W Y. Study on high temperature corrosion coupled erosion wear characteristics of fluidized bed boiler [D]. Wulumuqi: Xinjiang University, 2021
吴文亚. 流化床锅炉高温腐蚀耦合冲蚀磨损的特性研究 [D]. 乌鲁木齐: 新疆大学, 2021
10 Zhao X P, Sun J R, Zou H R. An experimental study on the hot flying ash erosion of 20 carbon steel [J]. Proc. CSEE, 2001, 21(6): 90
赵宪萍, 孙坚荣, 邹辉荣. 20碳钢热态飞灰冲刷磨损性能的试验研究 [J]. 中国电机工程学报, 2001, 21(6): 90
11 Hidalgo V H, Varela J B, Menéndez A C, et al. High temperature erosion wear of flame and plasma-sprayed nickel-chromium coatings under simulated coal-fired boiler atmospheres [J]. Wear, 2001, 247: 214
doi: 10.1016/S0043-1648(00)00540-8
12 Sun H. Study on thermal spraying Cr3C2-NiCr composite coating for power plant boiler pipeline [D]. Ma’anshan: Anhui University of Technology, 2018
孙 华. 电厂锅炉管道热喷涂Cr3C2-NiCr复合涂层的研究 [D]. 马鞍山: 安徽工业大学, 2018
13 Xue Y T. The wear mechanism and control measures of water cooling wall in circulating fluidized bed boiler [J]. Petrochem. Ind. Appl., 2018, 37(3): 141
薛永涛. 循环流化床锅炉水冷壁磨损机理及控制措施浅析 [J]. 石油化工应用, 2018, 37(3): 141
14 Zhong C Y. Preparing and properties research of wear resistance composite boiler tubes [D]. Baoding: North China Electric Power University, 2013
钟成圆. 高耐磨损复合锅炉管的制备及其特性研究 [D]. 保定: 华北电力大学, 2013
15 Chen L H, Jin J, Fan J R, et al. Study on the erosion protection technique for the boiler tube bundles of power plant [J]. Proc. CSEE, 1999, 19(7): 67
陈丽华, 金 军, 樊建人 等. 电站锅炉受热面管束防磨技术的研究 [J]. 中国电机工程学报, 1999, 19(7): 67
16 Wang L, Zhang Y Q. Municipal solid waste incinerators and erosion resistant refractory [J]. Power Equip., 2007, 21: 316
王 雷, 张运翘. 垃圾焚烧炉及耐火耐磨材料探讨 [J]. 发电设备, 2007, 21: 316
17 Liu J L, Li Y M, Yang L. Analysis of the wearing of water cooling wall pipe of CFB boiler and prevention measures [J]. China Plant Eng., 2004, (10): 34
刘吉亮, 厉彦明, 杨 雷. CFB锅炉水冷壁管磨损分析及防治对策 [J]. 中国设备工程, 2004, (10): 34
18 Sun W B, Feng Y X. Application of thin anti-wear tile for power station boiler smooth tube economizer [J]. Central China Electric Power, 1998, (2): 71
孙文波, 冯永新. 电站锅炉光管省煤器薄壁防磨瓦的应用 [J]. 华中电力, 1998, (2): 71
19 Pronobis M. Harmful phenomena in modernized boilers [A]. Environmentally Oriented Modernization of Power Boilers [M]. Amsterdam: Elsevier, 2020: 213
20 Xia Y F, Cheng L M, Yu C J, et al. Anti-wear beam effects on gas-solid hydrodynamics in a circulating fluidized bed [J]. Particuology, 2015, 19: 173
doi: 10.1016/j.partic.2014.05.011
21 Xu L J, Cheng L M, Ji J Q, et al. Effect of anti-wear beams on waterwall heat transfer in a CFB boiler [J]. Int. J. Heat Mass Transfer, 2017, 115: 1092
doi: 10.1016/j.ijheatmasstransfer.2017.08.085
22 Gao Z Q. Application of anti-wear beam in long period operation of power plant boiler [J]. Appl. Energy Technol., 2019, (8): 26
高自强. 防磨梁在电厂锅炉长周期运行中的应用 [J]. 应用能源技术, 2019, (8): 26
23 Wang J. Research on water wall abrasion and anti-wear of circulating fludized bed boiler [D]. Zibo: Shandong University of Technology, 2020
王 佳. 循环流化床锅炉水冷壁磨损与防磨研究 [D]. 淄博: 山东理工大学, 2020
24 Vicenzi J, Villanova D L, Lima M D, et al. HVOF-coatings against high temperature erosion (∼300 °C) by coal fly ash in thermoelectric power plant [J]. Mater. Des., 2006, 27: 236
doi: 10.1016/j.matdes.2004.10.008
25 Zhang C, Wu X H, Dai P Q. Erosive wear properties of FeCoCr0.5NiBSi x high-entropy alloy coating at high temperature [J]. Surf. Technol., 2019, 48(2): 166
张 冲, 吴旭晖, 戴品强. FeCoCr 0. 5NiBSix高熵合金涂层的高温冲蚀磨损性能 [J]. 表面技术, 2019, 48(2): 166
26 Li T J, Li W, Li Y, et al. Performance of HVOF NiCr cermets coating against high temperature sulfur corrosion and erosion [J]. Proc. CSEE, 2012, 32(20): 120
李太江, 李 巍, 李 勇 等. 超音速火焰喷涂制备NiCr金属陶瓷涂层的抗高温硫腐蚀与冲蚀磨损性能 [J]. 中国电机工程学报, 2012, 32(20): 120
27 Kang J X, Zhao W Z, Zhu J H. Erosion resistance of materials [J]. Mater. Prot., 2001, 34(10): 22
康进兴, 赵文轸, 朱金华. 材料抗冲蚀性的研究进展 [J]. 材料保护, 2001, 34(10): 22
28 Zhu Z X, Xu B S, Xu X Y, et al. High temperature erosion wear behavior and thermal spraying protection of utility boiler tubes [J]. Electric Power, 2001, 34(12): 16
朱子新, 徐滨士, 徐向阳 等. 电站锅炉管道高温冲蚀磨损和涂层防护技术 [J]. 中国电力, 2001, 34(12): 16
29 Mou J, Li J, Guo S Y, et al. Developments of researches on erosion of metallic and ceramic materials [J]. Mater. Sci. Eng., 1994, (2): 9
牟 军, 郦 剑, 郭绍义 等. 金属及陶瓷材料冲蚀研究的进展 [J]. 材料科学与工程, 1994, (2): 9
30 Xie W W, Deng J X, Zhou H M, et al. Development and prospect in numerical simulation of erosion [J]. Corros. Prot., 2012, 33: 601
谢文伟, 邓建新, 周后明 等. 材料冲蚀磨损的数值模拟研究现状及展望 [J]. 腐蚀与防护, 2012, 33: 601
31 Chen D, He D. Analysis of high temperature erosion wear and coating protection technology for utility boiler pipes [J]. Energy Conservat. Environ. Prot., 2020, (4): 54
陈 栋, 何 栋. 电站锅炉管道高温冲蚀磨损和涂层防护技术分析 [J]. 节能与环保, 2020, (4): 54
32 Suckling M, Allen C. The design of an apparatus to test wear of boiler tubes [J]. Wear, 1995, 186/187: 266
33 Shan X Y. Study on distribution and extraction characteristics of valuable elements in fly ash [D]. Taiyuan: Shanxi University, 2019
单雪媛. 粉煤灰中有价元素分布规律及浸出行为研究 [D]. 太原: 山西大学, 2019
34 Qiu Q L. Study on microwave-assisted hydrothermal disposal and product adsorption property of MSWI fly ash [D]. Hangzhou: Zhejiang University, 2019
邱琪丽. 垃圾焚烧飞灰的微波水热法无害化处置及产物吸附性能研究 [D]. 杭州: 浙江大学, 2019
35 Lu G. Investigation on water wall wear characteristics of circulating fluidized boiler [D]. Baoding: North China Electric Power University, 2005
卢 刚. 循环流化床锅炉水冷壁磨损特性研究 [D]. 保定: 华北电力大学, 2005
36 Guo L. An experimental study on the erosion mechanism in power station and the anti-erosion performance of materials [D]. Taiyuan: Taiyuan University of Technology, 2007
郭 雷. 电站锅炉冲蚀磨损机理及材料防磨性能的试验研究 [D]. 太原: 太原理工大学, 2007
37 Antonov M, Veinthal R, Huttunen-Saarivirta E, et al. Effect of oxidation on erosive wear behaviour of boiler steels [J]. Tribol. Int., 2013, 68: 35
doi: 10.1016/j.triboint.2012.09.011
38 Das S K, Godiwalla K M, Hegde S S, et al. A mathematical model to characterize effect of silica content in the boiler fly ash on erosion behaviour of boiler grade steel [J]. J. Mater. Process. Technol., 2008, 204: 239
doi: 10.1016/j.jmatprotec.2007.11.055
39 Liu Y. Study on high temperature corrosion behavior and life prediction of T92 steel used in power station boiler [D]. Guangzhou: South China University of Technology, 2017
刘 洋. 电站锅炉用T92钢高温腐蚀行为研究及寿命预测 [D]. 广州: 华南理工大学, 2017
40 Hong X S, Zhang J S, Wang J W, et al. The mechanism of the water wall erosion in a circulating fluidized bed boiler and its improvement [J]. Boiler Technol., 2007, 38(4): 19
侯祥松, 张建胜, 王进伟 等. 循环流化床锅炉中水冷壁的磨损原理及其预防 [J]. 锅炉技术, 2007, 38(4): 19
41 Ma K L. Analyze on cause of boiler tube leakage and prevent ion measures [J]. Boiler Technol., 2008, 39(6): 66
马克利. 锅炉炉管泄露的原因分析及防范措施 [J]. 锅炉技术, 2008, 39(6): 66
42 Finnie I. Erosion of surfaces by solid particles [J]. Wear, 1960, 3: 87
doi: 10.1016/0043-1648(60)90055-7
43 Bitter J G A. A study of erosion phenomena [J]. Wear, 1963, 6: 169
doi: 10.1016/0043-1648(63)90073-5
44 Yuan B Q. Study on erosion and deposition characteristics of heating surface based on gas-solid two-phase flow [D]. Ji’nan: Shandong University, 2018
袁宝强. 基于气固两相流的受热面磨损与沉积特性研究 [D]. 济南: 山东大学, 2018
45 Jing Y W, Liu S G. A study on erosion and protective methods of water wall tubes of CFB boilers [J]. J. Chin. Soc. Power Eng., 2005, 25: 747
景永伟, 刘少光. 流化床锅炉水冷壁管冲蚀磨损特性及防磨措施 [J]. 动力工程, 2005, 25: 747
46 Mathapati M, Ramesh M R, Doddamani M. High temperature erosion behavior of plasma sprayed NiCrAlY/WC-Co/cenosphere coating [J]. Surf. Coat. Technol., 2017, 325: 98
doi: 10.1016/j.surfcoat.2017.06.033
47 Gandhi M B, Vuthaluru R, Vuthaluru H, et al. CFD based prediction of erosion rate in large scale wall-fired boiler [J]. Appl. Therm. Eng., 2012, 42: 90
doi: 10.1016/j.applthermaleng.2012.03.015
48 Cui J K, Zhao J, Guo R N. Abrasion mechanism analysis and protection research on economizer of circulating fluidized bed boilers [J]. Energy Conservat. Technol., 2007, 25: 475
崔俊奎, 赵 军, 郭仁宁. 循环流化床锅炉省煤器磨损机理分析及防护改造 [J]. 节能技术, 2007, 25: 475
49 Ma Z G. Study on flow hydrodynamics, combustion and abrasion properties of CFB boiler burning anthracite [D]. Hangzhou: Zhejiang University, 2007
马志刚. 无烟煤循环流化床内流动、燃烧与磨损的研究 [D]. 杭州: 浙江大学, 2007
50 Shao H S, Qu J X, Xu Z D, et al. Friction and Wear [M]. Beijing: China Coal Industry Publishing House, 1992
邵荷生, 曲敬信, 许小棣 等. 摩擦与磨损 [M]. 北京: 煤炭工业出版社, 1992
51 Zhao Z F. Operating Technology of Circulating Fluidized Bed Boiler [M]. Beijing: China Electric Power Press, 2007
赵宗锋. 循环流化床锅炉运行技术 [M]. 北京: 中国电力出版社, 2007
52 Mbabazi J G, Sheer T J, Shandu R. A model to predict erosion on mild steel surfaces impacted by boiler fly ash particles [J]. Wear, 2004, 257: 612
doi: 10.1016/j.wear.2004.03.007
53 Lee B E, Tu J Y, Fletcher C A J. On numerical modeling of particle-wall impaction in relation to erosion prediction: Eulerian versus Lagrangian method [J]. Wear, 2002, 252: 179
doi: 10.1016/S0043-1648(01)00838-9
54 Oka Y I, Yoshida T. Practical estimation of erosion damage caused by solid particle impact, Part 2: Mechanical properties of materials directly associated with erosion damage [J]. Wear, 2005, 259: 102
doi: 10.1016/j.wear.2005.01.040
55 Oka Y I, Okamura K, Yoshida T. Practical estimation of erosion damage caused by solid particle impact, Part 1: Effects of impact parameters on a predictive equation [J]. Wear, 2005, 259: 95
doi: 10.1016/j.wear.2005.01.039
56 Ge C, Zhong W Q, Zhou G W, et al. Numerical experimental study and operation optimization on wear characteristics of division panel superheater of pulverized-coal boilers [J]. Proc. CSEE, 2021, 41: 8057
葛 闯, 钟文琪, 周冠文 等. 电站煤粉锅炉分隔屏过热器磨损特性数值试验研究及运行优化 [J]. 中国电机工程学报, 2021, 41: 8057
57 Zhou M W, Niu G P, Jia G R, et al. Numerical simulation of fly ash erosion on bolier tail flue channel [J]. Therm. Power Gener., 2019, 48(8): 62
周梦伟, 牛国平, 贾光瑞 等. 烟气飞灰对锅炉尾部烟道磨损数值模拟 [J]. 热力发电, 2019, 48(8): 62
58 Mansouri A, Arabnejad H, Shirazi S A, et al. A Combined CFD/experimental methodology for erosion prediction [J]. Wear, 2015, 332/333: 1090
59 Zhang L, Sazonov V, Kent J, et al. Analysis of boiler-tube erosion by the technique of acoustic emission: Part I. Mechanical erosion [J]. Wear, 2001, 250: 762
doi: 10.1016/S0043-1648(01)00714-1
60 Zhao K L. Distribution characteristics of rare earth elements in incineration fly ash from municipal solid waste [D]. Taiyuan: Shanxi Normal University, 2019
赵凯丽. 生活垃圾焚烧飞灰中稀土元素分布特征研究 [D]. 太原: 山西师范大学, 2019
61 Liebhard M, Levy A. The effect of erodent particle characteristics on the erosion of metals [J]. Wear, 1991, 151: 381
doi: 10.1016/0043-1648(91)90263-T
62 Liang J P, Zuo H B, Liu S H, et al. Study on 20 g erosion wear performance of dust-containing airflow [J]. J. Eng. Therm. Energy Power, 2020, 35: 208
梁佳鹏, 左海滨, 刘燊辉 等. 含尘气流对20 g冲蚀磨损性能的研究 [J]. 热能动力工程, 2020, 35: 208
63 Chen C H, Li Q T, Zhang L J, et al. High temperature erosion-wear behavior and mechanism of 304 stainless steel [J]. Mater. Prot., 2012, 45(7): 15
陈川辉, 李庆棠, 张林进 等. 不锈钢材料高温冲蚀磨损性能与机理 [J]. 材料保护, 2012, 45(7): 15
64 Misra A, Finnie I. On the size effect in abrasive and erosive wear [J]. Wear, 1981, 65: 359
doi: 10.1016/0043-1648(81)90062-4
65 Lee B H, Kim K M, Bae Y H, et al. Effect of bed particle size on the gas-particle hydrodynamics and wall erosion characteristics in a 550 MWe USC CFB boiler using CPFD simulation [J]. Energy, 2022, 254: 124263
doi: 10.1016/j.energy.2022.124263
66 Zhu Y Z, Wang Z C, Yang Z C, et al. Analysis on formation mechansim of large particle fly ash in utility boilers [J]. Therm. Power Gener., 2019, 48(12): 111
朱义洲, 王志超, 杨忠灿 等. 燃煤电站锅炉大颗粒飞灰成因分析 [J]. 热力发电, 2019, 48(12): 111
67 Qi L Q, Yuan Y T. Characteristics and the behavior in electrostatic precipitators of high-alumina coal fly ash from the Jungar power plant, Inner Mongolia, China [J]. J. Hazard. Mater., 2011, 192: 222
doi: 10.1016/j.jhazmat.2011.05.012 pmid: 21621327
68 Yan L, Wang Y F, Ma H Z, et al. Feasibility of fly ash-based composite coagulant for coal washing wastewater treatment [J]. J. Hazard. Mater., 2012, 203/204: 221
69 Deepak M S, Rohini S, Harini B S, et al. Influence of fly-ash on the engineering characteristics of stabilised clay soil [J]. Mater. Today: Proc., 2021, 37: 2014
70 Sahu S P, Satapathy A, Patnaik A, et al. Development, characterization and erosion wear response of plasma sprayed fly ash-aluminum coatings [J]. Mater. Des., 2010, 31: 1165
doi: 10.1016/j.matdes.2009.09.039
71 Kang S, Lloyd Z, Kim T, et al. Predicting the compressive strength of fly ash concrete with the particle model [J]. Cem. Concr. Res., 2020, 137: 106218
doi: 10.1016/j.cemconres.2020.106218
72 Xie K, Hu H Y, Cao J X, et al. A novel method for salts removal from municipal solid waste incineration fly ash through the molten salt thermal treatment [J]. Chemosphere, 2020, 241: 125107
doi: 10.1016/j.chemosphere.2019.125107
73 Hu H Y, Liu H, Shen W Q, et al. Comparison of CaO’s effect on the fate of heavy metals during thermal treatment of two typical types of MSWI fly ashes in China [J]. Chemosphere, 2013, 93: 590
doi: 10.1016/j.chemosphere.2013.05.077
74 Li W H, Sun Y J, Huang Y M, et al. Evaluation of chemical speciation and environmental risk levels of heavy metals during varied acid corrosion conditions for raw and solidified/stabilized MSWI fly ash [J]. Waste Manag., 2019, 87: 407
doi: 10.1016/j.wasman.2019.02.033
75 Li H. Erosion analysis and protective measures of water wall in CFB boiler [J]. China Plant Eng., 2019, (7): 81
李 辉. 循环流化床锅炉水冷壁的磨损原因分析及防磨措施 [J]. 中国设备工程, 2019, (7): 81
76 Mills D. Erosive wear [A]. Pneumatic Conveying Design Guide [M]. 3rd ed. Amsterdam: Elsevier, 2016: 617
77 Pronobis M, Wojnar W. The impact of biomass co-combustion on the erosion of boiler convection surfaces [J]. Energy Convers. Manage., 2013, 74: 462
doi: 10.1016/j.enconman.2013.06.059
78 Zhao X P, Sun J R. An experimental study on the hot flying-ash erosion of steel used in boilers of power station [J]. Proc. CSEE, 2005, 25(21): 117
赵宪萍, 孙坚荣. 电厂锅炉常用钢材热态飞灰磨损性能的试验研究 [J]. 中国电机工程学报, 2005, 25(21): 117
79 Meuronen V. Ash Particle Erosion on Steam Boiler Convective Section [M]. Lappeenranta: Lappeenranta University of Technology, 1997
80 Li J B, Wang P L, Cheng L. Characteristics of ash deposition on a novel heat transfer surface [J]. CIESC J., 2016, 67: 3598
doi: 10.11949/j.issn.0438-1157.20160232
李金波, 王沛丽, 程 林. 一种新型受热面飞灰颗粒的沉积特性 [J]. 化工学报, 2016, 67: 3598
doi: 10.11949/j.issn.0438-1157.20160232
81 Alam T, Islam M A, Farhat Z N. Slurry erosion of pipeline steel: effect of velocity and microstructure [J]. J. Tribol., 2016, 138: 021604
82 Xue L Y. Discussion about abrasion of convective heating surface in coal fired boiler [J]. Boiler Technol., 2017, 48(3): 62
薛凌云. 燃煤锅炉中对流受热面的磨损问题探讨 [J]. 锅炉技术, 2017, 48(3): 62
83 Dong G, Zhang J Y. Developments of research on the solid particle erosion of materials [J]. J. Mater. Sci. Eng., 2003, 21: 307
董 刚, 张九渊. 固体粒子冲蚀磨损研究进展 [J]. 材料科学与工程学报, 2003, 21: 307
84 Nguyen Q B, Nguyen V B, Lim C Y H, et al. Effect of impact angle and testing time on erosion of stainless steel at higher velocities [J]. Wear, 2014, 321: 87
doi: 10.1016/j.wear.2014.10.010
85 Wang Y, He Q, Yu F, et al. Numerical simulation of the erosion characteristics and structure optimization of elbows connection for gas-solid flow [J]. Proc. CSEE, 2018, 38: 832
王 宇, 何 琪, 于 飞 等. 组合弯头内气固两相流动磨损特性的数值模拟与结构优化 [J]. 中国电机工程学报, 2018, 38: 832
86 Parslow G I, Stephenson D J, Strutt J E, et al. Paint layer erosion resistance behaviour for use in a multilayer paint erosion indication technique [J]. Wear, 1997, 212: 103
doi: 10.1016/S0043-1648(97)00118-X
87 Arabnejad H, Mansouri A, Shirazi S A, et al. Development of mechanistic erosion equation for solid particles [J]. Wear, 2015, 332/333: 1044
88 Meuronen V. Erosion durability of steels in steam boiler heat exchanger tubes [J]. Wear, 2000, 240: 164
doi: 10.1016/S0043-1648(00)00346-X
89 Islam M A, Alam T, Farhat Z N, et al. Effect of microstructure on the erosion behavior of carbon steel [J]. Wear, 2015, 332-333: 1080
doi: 10.1016/j.wear.2014.12.004
90 Okonkwo P C, Mohamed A M A, Ahmed E. Influence of particle velocities and impact angles on the erosion mechanisms of AISI 1018 steel [J]. Adv. Mater. Lett., 2015, 6: 653
doi: 10.5185/amlett.2015.5645
91 Lindgren M, Perolainen J. Slurry pot investigation of the influence of erodent characteristics on the erosion resistance of austenitic and duplex stainless steel grades [J]. Wear, 2014, 319: 38
doi: 10.1016/j.wear.2014.07.006
92 Tylczak J H. Erosion-corrosion of iron and nickel alloys at elevated temperature in a combustion gas environment [J]. Wear, 2013, 302: 1633
doi: 10.1016/j.wear.2013.01.008
93 Huttunen-Saarivirta E, Antonov M, Veinthal R, et al. Influence of particle impact conditions and temperature on erosion-oxidation of steels at elevated temperatures [J]. Wear, 2011, 272: 159
doi: 10.1016/j.wear.2011.08.010
94 Singh J, Nath S K. Improved slurry erosion resistance of martensitic 13wt.% Cr-4wt.% Ni steel subjected to cyclic heat treatment [J]. Wear, 2020, 460/461: 203476
95 Gadhikar A A, Sharma A, Goel D B, et al. Effect of carbides on erosion resistance of 23-8-N steel [J]. Bull. Mater. Sci., 2014, 37: 315
doi: 10.1007/s12034-014-0656-3
96 Kumar A, Sharma A, Goel S K. Effect of heat treatment on microstructure, mechanical properties and erosion resistance of cast 23-8-N nitronic steel [J]. Mater. Sci. Eng., 2015, 637A: 56
97 Ma X C. Abrasion mechanism analysis and protection research on circulating fluidized bed boilers [J]. Technol. Innovat. Prod., 2022, (4): 142
马喜成. 循环流化床锅炉磨损机理分析及防磨研究 [J]. 科技创新与生产力, 2022, (4): 142
98 Li H Y, Liu H, Zhang X J, et al. Summary of improving erosion and corrosion resistance of heat exchange surfaces in boilers through HVOF technology [J]. CIESC J., 2021, 72: 1833
doi: 10.11949/0438-1157.20200985
李海燕, 刘 欢, 张秀菊 等. HVOF喷涂用于提高锅炉换热面耐磨损耐腐蚀性能综述 [J]. 化工学报, 2021, 72: 1833
doi: 10.11949/0438-1157.20200985
99 Zhang X J, Liu H, Chen T Z, et al. Application of coatings to alleviate fireside corrosion on heat transfer tubes during the combustion of low-grade solid fuels: a review [J]. Energy Fuels, 2020, 34: 11752
doi: 10.1021/acs.energyfuels.0c02145
100 Kumar M, Singh H, Singh N, et al. Erosion-corrosion behavior of cold-spray nanostructured Ni-20Cr coatings in actual boiler environment [J]. Wear, 2015, 332/333: 1035
101 Sadeghi E, Joshi S. Chlorine-induced high-temperature corrosion and erosion-corrosion of HVAF and HVOF-sprayed amorphous Fe-based coatings [J]. Surf. Coat. Technol., 2019, 371: 20
doi: 10.1016/j.surfcoat.2019.01.080
102 Ren Y, Zhao H J, Zhou H, et al. Effect of sand size and temperature on synergistic effect of erosion-corrosion for 20 steel in simulated oilfield produced fluid with sand [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 508
任 莹, 赵会军, 周 昊 等. 粒径和温度对20号钢冲刷腐蚀协同作用的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 508
103 Chen S P, Qin F, Sun X J, et al. Comparative study on waste heat boiler steam parameter of garbage burning power plant [J]. Heilongjiang Electric Power, 2010, 32: 204
陈善平, 秦 峰, 孙向军 等. 垃圾焚烧发电厂余热锅炉蒸汽参数的比较研究 [J]. 黑龙江电力, 2010, 32: 204
104 Sankar G, Kumar D S, Balasubramanian K R. Computational modeling of pulverized coal fired boilers-a review on the current position [J]. Fuel, 2019, 236: 643
doi: 10.1016/j.fuel.2018.08.154
105 Yue G X, Cai R X, Lu J F, et al. From a CFB reactor to a CFB boiler-The review of R&D progress of CFB coal combustion technology in China [J]. Powder Technol., 2017, 316: 18
doi: 10.1016/j.powtec.2016.10.062
106 Wang H B, Liu H Y. Analysis on the boiler type and grate of biomass direct combustion power station [J]. Sci. Technol. Inform., 2019, 17(34): 53
王海波, 刘海勇. 浅谈生物质能直燃发电站锅炉炉型和炉排 [J]. 科技资讯, 2019, 17(34): 53
107 Liu Z Q, Liu Z H, Li X L. Status and prospect of the application of municipal solid waste incineration in China [J]. Appl. Therm. Eng., 2006, 26: 1193
doi: 10.1016/j.applthermaleng.2005.07.036
108 Liu R M. CFD simulation study on combustion of municipal solid waste in the large-scale grate incinerator [D]. Hangzhou: Zhejiang University, 2017
刘瑞媚. 大型炉排炉垃圾焚烧过程的CFD模拟研究 [D]. 杭州: 浙江大学, 2017
109 Chen J J. Research on the structure and property of the new kind heat-resistant grate [D]. Guangzhou: South China University of Technology, 2012
陈家坚. 新型耐热炉排材质的组织和性能研究 [D]. 广州: 华南理工大学, 2012
110 Arjunwadkar A, Basu P, Acharya B. A review of some operation and maintenance issues of CFBC boilers [J]. Appl. Therm. Eng., 2016, 102: 672
doi: 10.1016/j.applthermaleng.2016.04.008
111 Liu S L. Research on operation adjustment and wear treatment of circulating fluidized bed boiler [J]. Mech. Electr. Inform., 2019, (32): 65
柳少龙. 循环流化床锅炉运行调整及磨损处理研究 [J]. 机电信息, 2019, (32): 65
112 Cheng L M, Xu L J, Xia Y F, et al. Key issues and solutions in development of the 600 MW CFB boiler [J]. Proc. CSEE, 2015, 35: 5520
程乐鸣, 许霖杰, 夏云飞 等. 600MW超临界循环流化床锅炉关键问题研究 [J]. 中国电机工程学报, 2015, 35: 5520
113 Liu X Y, Wang Y X, Xia H W. Analysis of CFB boiler economizer wear and protective measures [J]. Light Ind. Sci. Technol., 2012, 28(7): 60
刘贤英, 王义厢, 夏红伟. CFB锅炉省煤器磨损分析及防护措施 [J]. 轻工科技, 2012, 28(7): 60
114 Gong L H, Gong X L, Zheng H, et al. Application exploration of refractories for a 600MW supercritical CFB boiler [J]. Refractories, 2020, 54: 148
龚莲辉, 龚兴利, 郑 华 等. 600MW超临界CFB锅炉耐火材料应用探索 [J]. 耐火材料, 2020, 54: 148
115 Roy J, Chandra S, Maitra S. Nanotechnology in castable refractory [J]. Ceram. Int., 2019, 45: 19
doi: 10.1016/j.ceramint.2018.09.261
116 Liu J. Research on fatigue behavior and vibration damage of calcium Hexaluminate castable for catalytic gasifier [D]. Wuhan: Wuhan University of Science and Technology, 2019
刘 杰. 催化气化炉衬用六铝酸钙质浇注料疲劳行为及振动损毁研究 [D]. 武汉: 武汉科技大学, 2019
117 Peng X G, Sun J L, Li F S, et al. Effect of impacting parameter on abrasion resistance of alumina based refractories at room temperature [J]. Refractories, 2008, 42: 178
彭西高, 孙加林, 李福燊 等. 冲击参数对氧化铝基耐火材料常温耐磨性的影响 [J]. 耐火材料, 2008, 42: 178
118 Szymański K, Hernas A, Moskal G, et al. Thermally sprayed coatings resistant to erosion and corrosion for power plant boilers-a review [J]. Surf. Coat. Technol., 2015, 268: 153
doi: 10.1016/j.surfcoat.2014.10.046
119 Bala N, Singh H, Prakash S. Performance of cold sprayed Ni based coatings in actual boiler environment [J]. Surf. Coat. Technol., 2017, 318: 50
doi: 10.1016/j.surfcoat.2016.11.075
120 Wang B Q. Erosion-corrosion of thermal sprayed coatings in FBC boilers [J]. Wear, 1996, 199: 24
doi: 10.1016/0043-1648(96)06972-4
121 Matikainen V, Koivuluoto H, Vuoristo P. A study of Cr3C2-based HVOF- and HVAF-sprayed coatings: Abrasion, dry particle erosion and cavitation erosion resistance [J]. Wear, 2020, 446/447: 203188
122 Murthy J K N, Venkataraman B. Abrasive wear behaviour of WC-CoCr and Cr3C2-20(NiCr) deposited by HVOF and detonation spray processes [J]. Surf. Coat. Technol., 2006, 200: 2642
doi: 10.1016/j.surfcoat.2004.10.136
123 Thakur L, Arora N, Jayaganthan R, et al. An investigation on erosion behavior of HVOF sprayed WC-CoCr coatings [J]. Appl. Surf. Sci., 2011, 258: 1225
doi: 10.1016/j.apsusc.2011.09.079
124 Karaoglanli A C, Oge M, Doleker K M, et al. Comparison of tribological properties of HVOF sprayed coatings with different composition [J]. Surf. Coat. Technol., 2017, 318: 299
doi: 10.1016/j.surfcoat.2017.02.021
125 Zhang X Y, Li F Y, Li Y L, et al. Comparison on multi-angle erosion behavior and mechanism of Cr3C2-NiCr coatings sprayed by SPS and HVOF [J]. Surf. Coat. Technol., 2020, 403: 126366
doi: 10.1016/j.surfcoat.2020.126366
126 Espallargas N, Berget J, Guilemany J M, et al. Cr3C2-NiCr and WC-Ni thermal spray coatings as alternatives to hard chromium for erosion-corrosion resistance [J]. Surf. Coat. Technol., 2008, 202: 1405
doi: 10.1016/j.surfcoat.2007.06.048
127 Matthews S, James B, Hyland M. Erosion of oxide scales formed on Cr3C2-NiCr thermal spray coatings [J]. Corros. Sci., 2008, 50: 3087
doi: 10.1016/j.corsci.2008.08.032
128 Matikainen V, Peregrina S R, Ojala N, et al. Erosion wear performance of WC-10Co4Cr and Cr3C2-25NiCr coatings sprayed with high-velocity thermal spray processes [J]. Surf. Coat. Technol., 2019, 370: 196
doi: 10.1016/j.surfcoat.2019.04.067
129 Bansal A, Goyal D K, Singh P, et al. Erosive wear behaviour of HVOF-sprayed Ni-20Cr2O3 coating on pipeline materials [J]. Int. J. Refract. Met. Hard Mater., 2020, 92: 105332
doi: 10.1016/j.ijrmhm.2020.105332
130 Bhosale D G, Prabhu T R, Rathod W S, et al. High temperature solid particle erosion behaviour of SS 316L and thermal sprayed WC-Cr3C2-Ni coatings [J]. Wear, 2020, 462/463: 203520
131 Li S B, Xu L K, Shen C J, et al. Performance of erosion-resistant ceramic coatings deposited by plasma spraying [J]. J. Chin. Soc. Corros. Prot., 2011, 31: 196
李守彪, 许立坤, 沈承金 等. 等离子喷涂耐冲蚀陶瓷涂层的性能研究 [J]. 中国腐蚀与防护学报, 2011, 31: 196
132 Daniel J, Grossman J, Houdková Š, et al. Impact wear of the protective Cr3C2-based HVOF-sprayed coatings [J]. Materials, 2020, 13: 2132
doi: 10.3390/ma13092132
133 Janka L, Berger L M, Norpoth J, et al. Improving the high temperature abrasion resistance of thermally sprayed Cr3C2-NiCr coatings by WC addition [J]. Surf. Coat. Technol., 2018, 337: 296
doi: 10.1016/j.surfcoat.2018.01.035
134 Ding X, Cheng X D, Shi J, et al. Influence of WC size and HVOF process on erosion wear performance of WC-10Co4Cr coatings [J]. Int. J. Adv. Manuf. Technol., 2018, 96: 1615
doi: 10.1007/s00170-017-0795-y
135 Bhosale D G, Prabhu T R, Rathod W S. Sliding and erosion wear behaviour of thermal sprayed WC-Cr3C2-Ni coatings [J]. Surf. Coat. Technol., 2020, 400: 126192
doi: 10.1016/j.surfcoat.2020.126192
136 Matikainen V, Bolelli G, Koivuluoto H, et al. Sliding wear behaviour of HVOF and HVAF sprayed Cr3C2-based coatings [J]. Wear, 2017, 388/389: 57
137 Sidhu H S, Sidhu B S, Prakash S. Solid particle erosion of HVOF sprayed NiCr and Stellite-6 coatings [J]. Surf. Coat. Technol., 2007, 202: 232
doi: 10.1016/j.surfcoat.2007.05.035
138 Tailor S, Vashishtha N, Modi A, et al. Structural and mechanical properties of HVOF sprayed Cr3C2-25%NiCr coating and subsequent erosion wear resistance [J]. Mater. Res. Express, 2019, 6: 076435
139 Ksiazek M, Boron L, Tchorz A. Study on the microstructure, mechanical properties, and erosive wear behavior of HVOF sprayed Al2O3-15wt.%TiO2 coating with NiAl interlayer on Al-Si cast alloy [J]. Materials, 2020, 13: 4122
doi: 10.3390/ma13184122
140 Feng C Y, Xie Q, Yang L, et al. The resistance of TiN coatings to solid particle erosion using different deposition methods [J]. J. Fail. Anal. Prev., 2020, 20: 1615
doi: 10.1007/s11668-020-00957-z
141 Wood R J K. Tribology of thermal sprayed WC-Co coatings [J]. Int. J. Refract. Met. Hard Mater., 2010, 28: 82
doi: 10.1016/j.ijrmhm.2009.07.011
142 Lu S P, Kwon O Y, Guo Y. Wear behavior of brazed WC/NiCrBSi(Co) composite coatings [J]. Wear, 2003, 254: 421
doi: 10.1016/S0043-1648(03)00132-7
143 Panwar V, Grover N K, Chawla V. Wear behaviour of plasma sprayed WC-12%CΟ and Al2O3-13%TiO2 coatings on ASTM A36 steel used for I.D. fans in coal fired power plants [J]. Mater. Res. Express, 2019, 6: 1065b6
144 Wang Y X, Wang Y X, Chen C L, et al. Preparation of Zr/[Al(Si)N/CrN] coatings of stratified structure and their corrosion-wear performance in artificial seawater [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 345
王永欣, 汪艺璇, 陈春林 等. 具有“层中层”结构的Zr/[Al(Si)N/CrN]涂层制备及其在海水环境中腐蚀磨损特性 [J]. 中国腐蚀与防护学报, 2022, 42: 345
doi: 10.11902/1005.4537.2021.184
145 Lei Y H, Liu N X, Zhang Y L, et al. Preparation, corrosion- and wear-resistance of polymethyl methacrylate coating modified with particles of basalt/cerium oxide composite [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 597
类延华, 刘宁轩, 张玉良 等. 玄武岩/氧化铈改性PMMA涂层的防腐及耐磨性能的研究 [J]. 中国腐蚀与防护学报, 2022, 42: 597
doi: 10.11902/1005.4537.2021.186
[1] LIU Jing, CHEN Xuandong, YU Aiping, GONG Xinzhi. Multi-phase Mesoscopic Numerical Simulation of Chloride Ion Diffusion in Recycled Aggregate Concrete[J]. 中国腐蚀与防护学报, 2023, 43(5): 1111-1118.
[2] GAO Qiuying, ZENG Wenguang, WANG Heng, LIU Yuancong, HU Junying. Effect of Fluid Scouring on Sulfate Reducting Bacteria Induced Corrosion of Pipeline Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1087-1093.
[3] YANG Xinyu, LI Zhen, DUAN Tigang, HUANG Guosheng, MA Li, LIU Feng, JIANG Dan. Erosion Corrosion Behavior in Flowing Seawater for 70Cu-30Ni Alloy Pipelines with Chemical Conversion Film Preformed in Flowing FeSO4 Solution[J]. 中国腐蚀与防护学报, 2023, 43(3): 561-568.
[4] GUO Zihan, ZHANG Jun, LI Hui. Optimal Design for Anti-erosion of Pneumatic Conveying Elbow with Rib Structure[J]. 中国腐蚀与防护学报, 2023, 43(3): 525-534.
[5] QU Zuopeng, ZHANG Beibei, XIE Guangxiao, YANG Yuxi, WANG Yongtian, TIAN Xinli, WANG Haijun. Research Progress on Protection Technology for Waste Incinerator Heating Surfaces[J]. 中国腐蚀与防护学报, 2023, 43(3): 452-459.
[6] WANG Xiao, LIU Feng, LI Yan, ZHANG Wei, LI Xiangbo. Corrosion Behavior of B10 Cu-Ni Alloy Pipe in Static and Dynamic Seawater[J]. 中国腐蚀与防护学报, 2023, 43(1): 119-126.
[7] DONG Zhiyong, XU Xuyi, LI Yuhang. Effect of Sand Grain Size on Cavitation Erosion of Concrete Induced by High Velocity Sand Carrying Water Flow[J]. 中国腐蚀与防护学报, 2023, 43(1): 166-172.
[8] ZHENG Zhong, ZHOU Yuanxiang, LI Yongyin. AC Corrosion Behavior of Several Metallic Materials as Candidate for Boiler Electrode[J]. 中国腐蚀与防护学报, 2023, 43(1): 202-208.
[9] YANG Xiangyu, GUAN Lei, LI Yu, ZHANG Yongkang, WANG Guan, YAN Dejun. Numerical Simulation and Experimental Study on Erosion-corrosion of Square Elbow Based on Orthogonal Test[J]. 中国腐蚀与防护学报, 2022, 42(6): 979-987.
[10] GAO Qiuying, XU Yixuan, HU Pengwei, YAO Tianwan, QI Wenlong. Corrosion and Protection Technique of Regeneration Tower Bottom Reboiler in Natural Gas Purification Unit[J]. 中国腐蚀与防护学报, 2022, 42(4): 699-704.
[11] SONG Qining, WU Zhuyu, LI Huilin, TONG Yao, XU Nan, BAO Yefeng. Effect of Laser Surface Melting on Cavitation Erosion of Manganese-nickel-aluminum Bronze in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(6): 877-882.
[12] TONG Yao, SONG Qining, LI Huilin, XU Nan, BAO Yefeng, ZHANG Genyuan, ZHAO Lijuan. A Comparative Assessment on Cavitation Erosion Behavior of Typical Copper Alloys Used for Ship Propeller[J]. 中国腐蚀与防护学报, 2021, 41(5): 639-645.
[13] ZHU Zhe, CAI Jingshun, HONG Jinxiang, MU Song, ZHOU Xiaocheng, MA Qi, CHEN Cuicui. Effect of Hydration Response Nanomaterials on Corrosion Resistance of Reinforced Concrete[J]. 中国腐蚀与防护学报, 2021, 41(5): 732-736.
[14] REN Ying, ZHAO Huijun, ZHOU Hao, ZHANG Jianwei, LIU Wen, YANG Zuying, WANG Lei. Effect of Sand Size and Temperature on Synergistic Effect of Erosion-corrosion for 20 Steel in Simulated Oilfield Produced Fluid with Sand[J]. 中国腐蚀与防护学报, 2021, 41(4): 508-516.
[15] HU Zongwu, LIU Jianguo, XING Rui, YIN Fabo. Erosion-corrosion Behavior of 90o Horizontal Elbow in Single Phase Flow[J]. 中国腐蚀与防护学报, 2020, 40(2): 115-122.
No Suggested Reading articles found!