|
|
Improvement of Anode Corrosion Uniformity of Copper Electrolysis Cell Based on Multi-physical Field Coupling Theory |
SHANG Xiaobiao1,2( ), XIAO Renyou1, LI Jiajian1, ZHANG Zhihao1 |
1.Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China 2.National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming 650093, China |
|
|
Abstract For improving the copper anode corrosion uniformity and the current efficiency of the copper electrolytic refining process, herewith, based on the multi-physical field coupling theory, the corrosion behavior of the copper positive plate of the copper electrolytic refining cell was studied in terms of the effect of the synergy of the stress and strain, and local corrosion reaction, as well as the bottom radius of the anode plate on the positive electrode corrosion current density distribution and the thinning uniformity of the anode plate. The results show that when the bottom fillet radius of the anode increases from 2 mm to 12 mm, the current density mutation rate on the anode plate decreases by 6.18%. The uniformity of anode thinning rate was improved by 43.44%. When the fillet radius is 8 mm, the current efficiency is the highest, reaching 99.18%. By optimizing the geometrical shape of electrode plate, the uniformity of thinning rate and current efficiency of the anode plate are effectively improved, which provides a theoretical guidance for further optimizing the structure of electrolytic cell for reducing energy consumption, as well as improving the thinning uniformity of electrode plate.
|
Received: 08 May 2022
32134.14.1005.4537.2022.142
|
|
Fund: National Natural Science Foundation of China(51864030);Key Project of Yunnan Provincial Department of Science and Technology(202101AS070023) |
Corresponding Authors:
SHANG Xiaobiao, E-mail: shang21st@163.com
|
1 |
Schlesinger M E, King M J, Sole K C, et al. Extractive Metallurgy of Copper [M]. 5th ed. Amsterdam: Elsevier, 2011
|
2 |
Zhang H B, Chen G T, Zhang X B, et al. Method and practice of improving current efficiency of copper electrowinning [J]. Nonferrous Met. Eng. Res., 2017, 38(5): 24
|
|
张海宝, 陈耿涛, 章小兵 等. 提高铜电积电流效率的方法与实践 [J]. 有色冶金设计与研究, 2017, 38(5): 24
|
3 |
Pan T Y. A brief talk on the current efficiency of copper electrolytic refining [J]. Popular Sci. Technol., 2014, 16(9): 191
|
|
潘泰屹. 浅谈铜电解精炼的电流效率 [J]. 大众科技, 2014, 16(9): 191
|
4 |
Jiang C X, Chen G M, He Y P, et al. Application of simulation in hydrometallurgical zinc and copper smelting [J]. Mater. Sci. Technol., 2021, 29(5): 70
|
|
蒋春翔, 陈国木, 何亚鹏 等. 模拟仿真在湿法炼锌和炼铜中的应用 [J]. 材料科学与工艺, 2021, 29(5): 70
|
5 |
Ma R Y, Zhao L, Wang C G, et al. Influence of hydrostatic pressure on the thermodynamics and kinetics of metal corrosion [J]. Acta Metall. Sin., 2019, 55: 281
doi: 10.11900/0412.1961.2018.00215
|
|
马荣耀, 赵 林, 王长罡 等. 静水压力对金属腐蚀热力学及动力学的影响 [J]. 金属学报, 2019, 55: 281
doi: 10.11900/0412.1961.2018.00215
|
6 |
Yu D Z, Zhang T, Niu W T. Simulation analysis of stress corrosion of H62 copper alloy [J]. J. Phys.: Conf. Ser., 2021, 1748: 062052
|
7 |
Zeng Q Y, Meng Y, Li C, et al. Temperature effect of interelectrode short-circuit of copper electrolytic cell [J]. Hydrometall China, 2020, 39: 429
|
|
曾箐雨, 蒙 毅, 李 纯 等. 铜电解槽的极间短路温度效应 [J]. 湿法冶金, 2020, 39: 429
|
8 |
Wang J M, Yang H D, Du M, et al. Corrosion of B10 Cu-Ni alloy in seawater polluted by high concentration of NH4 + [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 609
|
|
王家明, 杨昊东, 杜 敏 等. B10铜镍合金在高浓度NH4 +污染海水中腐蚀研究 [J]. 中国腐蚀与防护学报, 2021, 41: 609
doi: 10.11902/1005.4537.2020.222
|
9 |
Zhang Y F, Yuan X G, Huang H J, et al. Corrosion behavior of Cu-Al laminated board in neutral salt fog environment [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 241
|
|
张艺凡, 袁晓光, 黄宏军 等. 铜铝层状复合板中性盐雾腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 241
|
10 |
Wang Z H, Bai Y, Ma X, et al. Numerical simulation of galvanic corrosion for couple of Ti-alloy with Cu-alloy in seawaters [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 403
|
|
王振华, 白 杨, 马 晓 等. 钛合金和铜合金管路电偶腐蚀数值仿真 [J]. 中国腐蚀与防护学报, 2018, 38: 403
doi: 10.11902/1005.4537.2017.113
|
11 |
Doche O, Bauer F, Tardu S. Direct numerical simulation of an electrolyte deposition under a turbulent flow-A first approach [J]. J. Electroanal. Chem., 2012, 664: 1
doi: 10.1016/j.jelechem.2011.10.003
|
12 |
Pohjoranta A, Mendelson A, Tenno R. A copper electrolysis cell model including effects of the ohmic potential loss in the cell [J]. Electrochim. Acta, 2010, 55: 1001
doi: 10.1016/j.electacta.2009.09.073
|
13 |
Mandin P, Cense J M, Fabian C, et al. Electrodeposition process modeling using continuous and discrete scales [J]. Comput. Chem. Eng., 2007, 31: 980
doi: 10.1016/j.compchemeng.2006.10.018
|
14 |
Kim K R, Choi S Y, Paek S, et al. Electrochemical hydrodynamics modeling approach for a copper electrowinning cell [J]. Int. J. Electrochem. Sci., 2013, 8: 12333
|
15 |
Werner J M, Zeng W, Free M L, et al. Editors' choice—modeling and validation of local electrowinning electrode current density using two phase flow and nernst-planck equations [J]. J. Electrochem. Soc., 2018, 165: E190
doi: 10.1149/2.0581805jes
|
16 |
Adachi K, Nakai Y, Kitada A, et al. FEM simulation of nodulation in copper electro-refining [A]. KimH, WesstromB, AlamS, et al. Rare Metal Technology 2018 [M]. Cham: Springer, 2018: 215
|
17 |
Zhou X, Yang W D. Production practice of process modification of copper stripping cell in copper electrolysis system [J]. China Nonferrous Metall., 2017, 46(1): 30
|
|
周 旋, 杨文栋. 铜电解生产系统脱铜槽工艺改进的生产实践 [J]. 中国有色冶金, 2017, 46(1): 30
|
18 |
Lin B Q, Li H, Chen Z W, et al. Sensitivity analysis on the microwave heating of coal: a coupled electromagnetic and heat transfer model [J]. Appl. Therm. Eng., 2017, 126: 949
doi: 10.1016/j.applthermaleng.2017.08.012
|
19 |
Subbaiah T, Das S C. Physico-chemical properties of copper electrolytes [J]. Metall. Mater. Trans., 1989, 20B: 375
|
20 |
Price D C, Davenport W G. Densities, electrical conductivities and viscosities of CuSO4/H2SO4 solutions in the range of modern electrorefining and electrowinning electrolytes [J]. Metall. Trans., 1980, 11B: 159
|
21 |
Lazarev S I, Abonosimov O A, Protasov D N, et al. Mathematical model of electromembrane separation of copper-electroplating production solutions [J]. Theor. Found. Chem. Eng., 2020, 54: 208
doi: 10.1134/S0040579519060071
|
22 |
Cheddie D, Munroe N. Review and comparison of approaches to proton exchange membrane fuel cell modeling [J]. J. Power Sources, 2005, 147: 72
doi: 10.1016/j.jpowsour.2005.01.003
|
23 |
Liu C, Li G Q, Zhang L F, et al. A three-dimensional comprehensive numerical model of ion transport during electro-refining process for scrap-metal recycling [J]. Materials, 2022, 15: 2789
doi: 10.3390/ma15082789
|
24 |
Dai G Q, Zeng C, Bian F S, et al. Improvement of thickness uniformity of gold coatings electroplated on the leads of microwave printed circuits [J]. Electroplat. Finish., 2018, 37: 687
|
|
戴广乾, 曾 策, 边方胜 等. 微波印制电路引线镀金厚度均匀性的改善 [J]. 电镀与涂饰, 2018, 37: 687
|
25 |
Zhou N. Analysis and control of the electrode short circuit of traditional copper electrolysis [J]. Copper Eng., 2018, (2): 63
|
|
周 楠. 铜电解极间短路的分析与控制 [J]. 铜业工程, 2018, (2): 63
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|