Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (3): 663-670    DOI: 10.11902/1005.4537.2022.142
Current Issue | Archive | Adv Search |
Improvement of Anode Corrosion Uniformity of Copper Electrolysis Cell Based on Multi-physical Field Coupling Theory
SHANG Xiaobiao1,2(), XIAO Renyou1, LI Jiajian1, ZHANG Zhihao1
1.Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China
2.National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming 650093, China
Download:  HTML  PDF(3853KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

For improving the copper anode corrosion uniformity and the current efficiency of the copper electrolytic refining process, herewith, based on the multi-physical field coupling theory, the corrosion behavior of the copper positive plate of the copper electrolytic refining cell was studied in terms of the effect of the synergy of the stress and strain, and local corrosion reaction, as well as the bottom radius of the anode plate on the positive electrode corrosion current density distribution and the thinning uniformity of the anode plate. The results show that when the bottom fillet radius of the anode increases from 2 mm to 12 mm, the current density mutation rate on the anode plate decreases by 6.18%. The uniformity of anode thinning rate was improved by 43.44%. When the fillet radius is 8 mm, the current efficiency is the highest, reaching 99.18%. By optimizing the geometrical shape of electrode plate, the uniformity of thinning rate and current efficiency of the anode plate are effectively improved, which provides a theoretical guidance for further optimizing the structure of electrolytic cell for reducing energy consumption, as well as improving the thinning uniformity of electrode plate.

Key words:  copper electrolytic cell      anodic corrosion      numerical simulation      current efficiency     
Received:  08 May 2022      32134.14.1005.4537.2022.142
ZTFLH:  TF811  
Fund: National Natural Science Foundation of China(51864030);Key Project of Yunnan Provincial Department of Science and Technology(202101AS070023)
Corresponding Authors:  SHANG Xiaobiao, E-mail: shang21st@163.com

Cite this article: 

SHANG Xiaobiao, XIAO Renyou, LI Jiajian, ZHANG Zhihao. Improvement of Anode Corrosion Uniformity of Copper Electrolysis Cell Based on Multi-physical Field Coupling Theory. Journal of Chinese Society for Corrosion and protection, 2023, 43(3): 663-670.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.142     OR     https://www.jcscp.org/EN/Y2023/V43/I3/663

Fig.1  Size and structure of electrolytic cell model
Fig.2  Mesh element quality (MEQ) distribution (a) and statistics (b) of the geometry model
Electrolyte physical parameter[19,20]Function expressionUnit
Density ρ1034.8+2.178[Cu]+0.531[H]-0.677Tkg/m3
Viscosity μ(1.39+0.00746[Cu]+0.0343[H])exp1792T×10-6Pa·s
Diffusion coefficient D(2.87-0.019[Cu]-0.0086[H]+1.67T)×10-10m2/s
Conductivity k0.134-0.00356[Cu]+0.00249[H]+0.00426Ts/cm
Table 1  Physical property parameters of electrolyte
Fig.3  Electrolyte potential distribution: (a) validation model results, (b) literature calculation results
Fig.4  Electrode surface current density at different fillet radii
Fig.5  Current density curves under different fillet radii
Fig.6  Anode current density range
Fig.7  Anodic corrosion thickness changes with different fillet radii
Fig.8  Corrosion thickness of left side of anode under different fillet radii
Fig.9  Uniformity coefficient of anodic corrosion thickness with different fillet radii
Fig.10  Current efficiency of different fillet radii
1 Schlesinger M E, King M J, Sole K C, et al. Extractive Metallurgy of Copper [M]. 5th ed. Amsterdam: Elsevier, 2011
2 Zhang H B, Chen G T, Zhang X B, et al. Method and practice of improving current efficiency of copper electrowinning [J]. Nonferrous Met. Eng. Res., 2017, 38(5): 24
张海宝, 陈耿涛, 章小兵 等. 提高铜电积电流效率的方法与实践 [J]. 有色冶金设计与研究, 2017, 38(5): 24
3 Pan T Y. A brief talk on the current efficiency of copper electrolytic refining [J]. Popular Sci. Technol., 2014, 16(9): 191
潘泰屹. 浅谈铜电解精炼的电流效率 [J]. 大众科技, 2014, 16(9): 191
4 Jiang C X, Chen G M, He Y P, et al. Application of simulation in hydrometallurgical zinc and copper smelting [J]. Mater. Sci. Technol., 2021, 29(5): 70
蒋春翔, 陈国木, 何亚鹏 等. 模拟仿真在湿法炼锌和炼铜中的应用 [J]. 材料科学与工艺, 2021, 29(5): 70
5 Ma R Y, Zhao L, Wang C G, et al. Influence of hydrostatic pressure on the thermodynamics and kinetics of metal corrosion [J]. Acta Metall. Sin., 2019, 55: 281
doi: 10.11900/0412.1961.2018.00215
马荣耀, 赵 林, 王长罡 等. 静水压力对金属腐蚀热力学及动力学的影响 [J]. 金属学报, 2019, 55: 281
doi: 10.11900/0412.1961.2018.00215
6 Yu D Z, Zhang T, Niu W T. Simulation analysis of stress corrosion of H62 copper alloy [J]. J. Phys.: Conf. Ser., 2021, 1748: 062052
7 Zeng Q Y, Meng Y, Li C, et al. Temperature effect of interelectrode short-circuit of copper electrolytic cell [J]. Hydrometall China, 2020, 39: 429
曾箐雨, 蒙 毅, 李 纯 等. 铜电解槽的极间短路温度效应 [J]. 湿法冶金, 2020, 39: 429
8 Wang J M, Yang H D, Du M, et al. Corrosion of B10 Cu-Ni alloy in seawater polluted by high concentration of NH4 + [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 609
王家明, 杨昊东, 杜 敏 等. B10铜镍合金在高浓度NH4 +污染海水中腐蚀研究 [J]. 中国腐蚀与防护学报, 2021, 41: 609
doi: 10.11902/1005.4537.2020.222
9 Zhang Y F, Yuan X G, Huang H J, et al. Corrosion behavior of Cu-Al laminated board in neutral salt fog environment [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 241
张艺凡, 袁晓光, 黄宏军 等. 铜铝层状复合板中性盐雾腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 241
10 Wang Z H, Bai Y, Ma X, et al. Numerical simulation of galvanic corrosion for couple of Ti-alloy with Cu-alloy in seawaters [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 403
王振华, 白 杨, 马 晓 等. 钛合金和铜合金管路电偶腐蚀数值仿真 [J]. 中国腐蚀与防护学报, 2018, 38: 403
doi: 10.11902/1005.4537.2017.113
11 Doche O, Bauer F, Tardu S. Direct numerical simulation of an electrolyte deposition under a turbulent flow-A first approach [J]. J. Electroanal. Chem., 2012, 664: 1
doi: 10.1016/j.jelechem.2011.10.003
12 Pohjoranta A, Mendelson A, Tenno R. A copper electrolysis cell model including effects of the ohmic potential loss in the cell [J]. Electrochim. Acta, 2010, 55: 1001
doi: 10.1016/j.electacta.2009.09.073
13 Mandin P, Cense J M, Fabian C, et al. Electrodeposition process modeling using continuous and discrete scales [J]. Comput. Chem. Eng., 2007, 31: 980
doi: 10.1016/j.compchemeng.2006.10.018
14 Kim K R, Choi S Y, Paek S, et al. Electrochemical hydrodynamics modeling approach for a copper electrowinning cell [J]. Int. J. Electrochem. Sci., 2013, 8: 12333
15 Werner J M, Zeng W, Free M L, et al. Editors' choice—modeling and validation of local electrowinning electrode current density using two phase flow and nernst-planck equations [J]. J. Electrochem. Soc., 2018, 165: E190
doi: 10.1149/2.0581805jes
16 Adachi K, Nakai Y, Kitada A, et al. FEM simulation of nodulation in copper electro-refining [A]. KimH, WesstromB, AlamS, et al. Rare Metal Technology 2018 [M]. Cham: Springer, 2018: 215
17 Zhou X, Yang W D. Production practice of process modification of copper stripping cell in copper electrolysis system [J]. China Nonferrous Metall., 2017, 46(1): 30
周 旋, 杨文栋. 铜电解生产系统脱铜槽工艺改进的生产实践 [J]. 中国有色冶金, 2017, 46(1): 30
18 Lin B Q, Li H, Chen Z W, et al. Sensitivity analysis on the microwave heating of coal: a coupled electromagnetic and heat transfer model [J]. Appl. Therm. Eng., 2017, 126: 949
doi: 10.1016/j.applthermaleng.2017.08.012
19 Subbaiah T, Das S C. Physico-chemical properties of copper electrolytes [J]. Metall. Mater. Trans., 1989, 20B: 375
20 Price D C, Davenport W G. Densities, electrical conductivities and viscosities of CuSO4/H2SO4 solutions in the range of modern electrorefining and electrowinning electrolytes [J]. Metall. Trans., 1980, 11B: 159
21 Lazarev S I, Abonosimov O A, Protasov D N, et al. Mathematical model of electromembrane separation of copper-electroplating production solutions [J]. Theor. Found. Chem. Eng., 2020, 54: 208
doi: 10.1134/S0040579519060071
22 Cheddie D, Munroe N. Review and comparison of approaches to proton exchange membrane fuel cell modeling [J]. J. Power Sources, 2005, 147: 72
doi: 10.1016/j.jpowsour.2005.01.003
23 Liu C, Li G Q, Zhang L F, et al. A three-dimensional comprehensive numerical model of ion transport during electro-refining process for scrap-metal recycling [J]. Materials, 2022, 15: 2789
doi: 10.3390/ma15082789
24 Dai G Q, Zeng C, Bian F S, et al. Improvement of thickness uniformity of gold coatings electroplated on the leads of microwave printed circuits [J]. Electroplat. Finish., 2018, 37: 687
戴广乾, 曾 策, 边方胜 等. 微波印制电路引线镀金厚度均匀性的改善 [J]. 电镀与涂饰, 2018, 37: 687
25 Zhou N. Analysis and control of the electrode short circuit of traditional copper electrolysis [J]. Copper Eng., 2018, (2): 63
周 楠. 铜电解极间短路的分析与控制 [J]. 铜业工程, 2018, (2): 63
[1] LUO Weihua, WANG Haitao, YU Lin, XU Shi, LIU Zhaoxin, GUO Yu, WANG Tingyong. Effect of Zn Content on Electrochemical Properties of Al-Zn-In-Mg Sacrificial Anode Alloy[J]. 中国腐蚀与防护学报, 2023, 43(5): 1071-1078.
[2] PAN Dailong, SI Xiaodong, LV Jinhong. Effect of Flow Velocity on Flow Accelerated Corrosion Rate of Carbon Steel Elbow[J]. 中国腐蚀与防护学报, 2023, 43(5): 1064-1070.
[3] KOU Jie, REN Zhe. Research Progress of Regional Cathodic Protection Potential Distribution of Tank Floor Based on Numerical Calculation[J]. 中国腐蚀与防护学报, 2023, 43(4): 871-881.
[4] GUO Zihan, ZHANG Jun, LI Hui. Optimal Design for Anti-erosion of Pneumatic Conveying Elbow with Rib Structure[J]. 中国腐蚀与防护学报, 2023, 43(3): 525-534.
[5] YANG Xiangyu, GUAN Lei, LI Yu, ZHANG Yongkang, WANG Guan, YAN Dejun. Numerical Simulation and Experimental Study on Erosion-corrosion of Square Elbow Based on Orthogonal Test[J]. 中国腐蚀与防护学报, 2022, 42(6): 979-987.
[6] PENG Yizhan, GONG Fuyuan, ZHAO Yuxi. Distribution of Stray Current Induced Corrosion of Reinforced Bars Within Concrete Based on Electric Field Analysis and Experiment with Transparent Imitated Concrete[J]. 中国腐蚀与防护学报, 2022, 42(5): 813-818.
[7] WANG Bingqin, ZHANG Xiaolian, YONG Xingyue, ZHOU Huan, GAO Xinhua. Numerical Simulation of Galvanic Corrosion of TP2Y Copper Pipes Coupled with Steel Pipes in a Seawater Pipe Systems of Ships[J]. 中国腐蚀与防护学报, 2022, 42(2): 200-210.
[8] DING Qingmiao, GAO Yuning, HOU Wenliang, QIN Yongxiang. Influence of Cl- Concentration on Corrosion Behavior of Reinforced Concrete in Soil[J]. 中国腐蚀与防护学报, 2021, 41(5): 705-711.
[9] ZHUANG Dawei, DU Yanxia, CHEN Taotao, LU Danping. Research on Boundary Condition Inversion Method for Numerical Simulation of Regional Cathodic Protection and Its Application[J]. 中国腐蚀与防护学报, 2021, 41(3): 346-352.
[10] WANG Tingyong, DONG Ruyi, XU Shi, WANG Hui. Electrochemical Properties of Graphene Modified Mixed Metal Oxide Anodes of Ti/IrTaSnSb-G in NaCl Solutions at Low Temperature[J]. 中国腐蚀与防护学报, 2020, 40(3): 289-294.
[11] Zhenhua WANG, Yang BAI, Xiao MA, Shaohua XING. Numerical Simulation of Galvanic Corrosion for Couple of Ti-alloy with Cu-alloy in Seawaters[J]. 中国腐蚀与防护学报, 2018, 38(4): 403-408.
[12] Mumeng WEI,Bojun YANG,Yangyang LIU,Xiaoping WANG,Jinghua YAO,Lingqing GAO. Research Progress and Prospect on Erosion-corrosion of Cu-Ni Alloy Pipe in Seawater[J]. 中国腐蚀与防护学报, 2016, 36(6): 513-521.
[13] CHENG Xudong, SUN Lianfang, CAO Zhifeng, ZHU Xingji, ZHAO Lixin. Numerical Simulation of Chloride Ion Induced Corrosion of Reinforced Concrete Structures in Marine Environment[J]. 中国腐蚀与防护学报, 2015, 35(2): 144-150.
[14] ZHAO Guoqiang, WEI Yinghua, LI Jing. Current Efficiency and Corrosion Mechanism of Al-Zn-In Sacrificial Anode at Different Current Densities[J]. 中国腐蚀与防护学报, 2015, 35(1): 69-74.
[15] ZHOU Tingting, YUAN Chengqing, CAO Pan, WANG Xuejun, DONG Conglin. Numerical Simulation Analysis of Fluid Erosion Corrosion of Injection Nozzle for Diesel Engine[J]. 中国腐蚀与防护学报, 2014, 34(6): 574-580.
No Suggested Reading articles found!