Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (3): 671-676    DOI: 10.11902/1005.4537.2022.254
Current Issue | Archive | Adv Search |
Corrosion Behavior in Molten Salts at 850 ℃ and Its Effect on Mechanical Properties of Hastelloy X Alloy Fabricated by Additive Manufacturing
SHANG Jin1, GU Yan2(), ZHAO Jing3, WANG Zhe2, ZHANG Bo4, ZHAO Tongjun5, CHEN Zehao5, WANG Jinlong5
1.Aero Engine Corporation of China Co. Ltd., Shanghai 200240, China
2.Shenyang Liming Aero-Engine Co. Ltd., Aero Engine Corporation of China, Shenyang 110043, China
3.Nuclear Power Institute of China, Chengdu 610041, China
4.China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou 510610, China
5.Corrosion and Protection Division, Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
Download:  HTML  PDF(11486KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The hot corrosion behavior in molten salt (75%Na2SO4+25%K2SO4) at 850 oC of Hastelloy X alloy made by additive manufacturing was studied, and then the room temperature mechanical properties of the alloy after molten salts corrosion were also assessed. The results show that the corrosion products of Hastelloy X are mainly composed of Ni-, Ti- and Cr-oxides. After hot corrosion for different times, the tensile strength of the additive manufactured alloy at room temperature changes little, while the rupture strength and plasticity decrease significantly, which may be ascribed to the change of the surface state and structure of the alloy induced by the molten salts corrosion process in terms of the effect of temperature and corrosion.

Key words:  additive manufacturing      hot corrosion      mechanical property     
Received:  08 August 2022      32134.14.1005.4537.2022.254
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China(51801021);Ministry of Industry and Information Technology Project(MJ-2017-J-99);Fundamental Research Funds for the Central Universities(N2102015)
Corresponding Authors:  GU Yan, E-mail: guyan19811102@163.com

Cite this article: 

SHANG Jin, GU Yan, ZHAO Jing, WANG Zhe, ZHANG Bo, ZHAO Tongjun, CHEN Zehao, WANG Jinlong. Corrosion Behavior in Molten Salts at 850 ℃ and Its Effect on Mechanical Properties of Hastelloy X Alloy Fabricated by Additive Manufacturing. Journal of Chinese Society for Corrosion and protection, 2023, 43(3): 671-676.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.254     OR     https://www.jcscp.org/EN/Y2023/V43/I3/671

Fig.1  Shape and size of specimen for room temperature tensile and endurance tests (mm)
Fig.2  Mass changes of additively manufactured Hastelloy X alloy after hot corrosion for different time
Fig.3  XRD patterns of additively manufactured Hastelloy X alloy before and after hot corrosion for 25, 50 and 100 h
Fig.4  Surface morphologies of additively manufactured Hastelloy X alloy after hot corrosion for 25 h (a), 50 h (b) and 100 h (c)
t / hNiCrTiOFe
2552.7213.470.1221.6111.13
5043.1017.940.1422.0514.59
10024.3919.420.1529.414.06
Table 1  EDS results of hot corrosion products formed on Hastelloy X alloy after hot corrosion for different time
Fig.5  Microstructures of additively manufactured Hastelloy X alloy before (a) and after hot corrosion for 25 h (b), 50 h (c) and 100 h (d)
Fig.6  Tensile strengths of additively manufactured Hast-elloy X alloy after hot corrosion for different time
Fig.7  Tensile fractures of additively manufactured Hastelloy X alloy after hot corrosion for 0 h (a), 25 h (b), 50 h (c) and 100 h (d)
Fig.8  Durable performances of additive-manufactured Hastelloy X alloy after hot corrosion for different time
Fig.9  Durable test fractures of additive-manufactured Hastelloy X alloy after hot corrosion for 0 h (a), 25 h (b), 50 h (c) and 100 h (d)
1 Zhao J C, Larsen M, Ravikumar V. Phase precipitation and time-temperature-transformation diagram of Hastelloy X [J]. Mater. Sci. Eng., 2000, 293A: 112
2 Sakthivel T, Laha K, Nandagopal M, et al. Effect of temperature and strain rate on serrated flow behaviour of Hastelloy X [J]. Mater. Sci. Eng., 2012, 534A: 580
3 Wang F D. Mechanical property study on rapid additive layer manufacture Hastelloy® X alloy by selective laser melting technology [J]. Int. J. Adv. Manuf. Technol., 2012, 58: 545
doi: 10.1007/s00170-011-3423-2
4 Wei Q, Li Y L, He Y L, et al. Influence of Hastelloy-X powder composition on anisotropic forming performance of selective laser melting [J]. Chin. J. Lasers, 2018, 45(12): 1202011
doi: 10.3788/CJL
魏 菁, 李雅莉, 何艳丽 等. Hastelloy-X粉末成分对激光选区熔化成形各向成形性能的影响 [J]. 中国激光, 2018, 45(12): 1202011
5 Tomus D, Tian Y, Rometsch P A, et al. Influence of post heat treatments on anisotropy of mechanical behaviour and microstructure of Hastelloy-X parts produced by selective laser melting [J]. Mater. Sci. Eng., 2016, 667A: 42
6 Yi P, Hou L F, Du H Y, et al. NaCl induced corrosion of three austenitic stainless steels at high temperature [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 288
伊 璞, 侯利锋, 杜华云 等. 新型奥氏体不锈钢高温NaCl腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 288
7 Long X Q. Mechanism of hot corrosion in high temperature parts of aeroengine [J]. Total Corros. Control, 2003, 17(2): 9
隆小庆. 航空发动机高温部件热腐蚀机理的探讨 [J]. 全面腐蚀控制, 2003, 17(2): 9
8 Lou X M, Sun W R, Guo S R, et al. Hot corrosion behavior of IN718 alloy and its effect on mechanical properties [J]. Rare Met. Mater. Eng., 2008, 37: 259
娄学明, 孙文儒, 郭守仁 等. IN718高温合金热腐蚀行为及其对力学性能的影响 [J]. 稀有金属材料与工程, 2008, 37: 259
9 Fan C, Chen M C, Chang C M, et al. Microstructure change caused by (Cr, Fe)23C6 carbides in high chromium Fe-Cr-C hardfacing alloys [J]. Surf. Coat. Technol., 2006, 201: 908
doi: 10.1016/j.surfcoat.2006.01.010
10 Yu Z H, Liu B L, Wang P H, et al. Research progress on the influence of hot corrosion on mechanical properties of superalloys and protective measures [J]. Foundry, 2019, 68: 550
余竹焕, 刘蓓蕾, 王盼航 等. 热腐蚀对高温合金力学性能的影响以及防护措施的研究进展 [J]. 铸造, 2019, 68: 550
11 Guan X R, Wei J, Liu E Z, et al. Effect of Ti content on hot corrosion resistance of nickel-base superalloy [J]. Rare Met. Mater. Eng., 2012, 41: 1990
管秀荣, 魏 健, 刘恩泽 等. Ti含量对镍基高温合金抗热腐蚀性能的影响 [J]. 稀有金属材料与工程, 2012, 41: 1990
12 Guo J T. Superalloy Materials Science (Volume 1) [M]. Beijing: Science Press, 2008: 368
郭建亭. 高温合金材料学 (上册) [M]. 北京: 科学出版社, 2008: 368
13 Peng S, Teng Y F, Shi F X, et al. Stress-rupture properties of Hastelloy X alloy by selective laser melting [J]. Fail. Anal. Prev., 2018, 13: 269
彭 霜, 滕跃飞, 石凤仙 等. 选区激光熔化成形Hastelloy X合金持久性能研究 [J]. 失效分析与预防, 2018, 13: 269
14 Zhang H Y, Zheng L W, Meng X M, et al. Effect of electrochemical hydrogen charging on hydrogen embrittlement sensitivity of Cr15 ferritic and 304 austenitic stainless steels [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 202
张慧云, 郑留伟, 孟宪明 等. 电化学充氢对Cr15铁素体不锈钢和304奥氏体不锈钢氢脆敏感性的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 202
doi: 10.11902/1005.4537.2020.099
[1] LIAO Minxing, LIU Jun, DONG Baojun, LENG Xuesong, CAI Zelun, WU Junwei, HE Jianchao. Effect of Salt Spray Environment on Performance of 1Cr18Ni9Ti Brazed Joint[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[2] WANG Hua, WANG Yingjie, LIU Enze. Hot Corrosion Behavior of New Type Co-Al-W Superalloys with Different Ni Contents[J]. 中国腐蚀与防护学报, 2023, 43(6): 1419-1426.
[3] QU Weiwei, CHEN Zehao, PEI Yanling, LI Shusuo, WANG Fuhui. Spreading and Corrosion Behavior of CMAS Melt on Different Materials for Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2023, 43(6): 1407-1412.
[4] ZHANG Quanfu, SONG Lei, WANG Jian, GUO Zhenyu, REN Naidong, ZHAO Jianqi, WU Weikang, CHENG Weili. Mechanical Properties and Corrosion Behavior of an Extruded Dilute Mg-alloy Mg-0.5Bi-0.5Sn-0.5Ca[J]. 中国腐蚀与防护学报, 2023, 43(2): 428-434.
[5] SHEN Jubao, CUI Yu, LIU Li, LIU Rui, MENG Fandi, WANG Fuhui. Cyclic Hot Corrosion Behavior of DZ40M and K452 Superalloys Beneath Molten Deposit NaCl[J]. 中国腐蚀与防护学报, 2023, 43(2): 280-288.
[6] ZHAO Haiyang, GAO Duolong, ZHANG Tong, LV You, ZHANG Yupeng, ZHANG Xinxin, SHI Xin, WEI Xiaojing, LIU Dongmei, DONG Zehua. Microstructure and Corrosion Evolution of Aerospace AA2024 Al-Alloy Thin Wall Structure Produced Through WAAM[J]. 中国腐蚀与防护学报, 2022, 42(4): 621-628.
[7] HU Yunyuan, QIAN Wei, HUA Yinqun, YE Yunxia, CAI Jie, DAI Fengze. Effect of Pre-corrosion of Gd2Zr2O7 at 900-1300 ℃ on Its Hot Corrosion Behavior at 1250 ℃ Beneath Deposites of CaO-MgO-Al2O3-SiO2[J]. 中国腐蚀与防护学报, 2022, 42(4): 687-692.
[8] WU Jiajie, WANG Yanli. Hot Corrosion and Protection of Structural Materials in Molten Salt Reactor[J]. 中国腐蚀与防护学报, 2022, 42(2): 193-199.
[9] YI Pu, HOU Lifeng, DU Huayun, LIU Xiaoda, JIA Jianwen, LI Yang, ZHANG Wei, XU Fanghong, WEI Yinghui. NaCl Induced Corrosion of Three Austenitic Stainless Steels at High Temperature[J]. 中国腐蚀与防护学报, 2022, 42(2): 288-294.
[10] FANG Haojie, QU Hua, YANG Lihui, ZENG Qingya, WANG Lidan, YUAN Ning, HOU Baorong, CAO Lixin, YUAN Xundao. Corrosion Behavior of 9C Series of Powder Metallurgy Al-alloy with High Corrosion Resistance[J]. 中国腐蚀与防护学报, 2021, 41(6): 775-785.
[11] XIONG Yi, LIU Guangming, ZHAN Fuyuan, MAO Xiaofei, LUO Qin, HONG Jia, NI Jinfei, LIU Yongqiang. Hot Corrosion and Failure Behavior of Three Thermal Spraying Coatings in Simulated Atmosphere/Coal Ash Environment[J]. 中国腐蚀与防护学报, 2021, 41(3): 369-375.
[12] JIANG Bochen, CAO Jiangdong, CAO Xueyu, WANG Jiantao, ZHANG Shaopeng. Hot Corrosion Behavior of Gd2(Zr1-xCex)2O7 Thermal Barrier Coating Ceramics Exposed to Artificial Particulates of CMAS[J]. 中国腐蚀与防护学报, 2021, 41(2): 263-270.
[13] BAI Haitao, YANG Min, DONG Xiaowei, MA Yun, WANG Rui. Research Progress on CO2 Corrosion Product Scales of Carbon Steels[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[14] CHEN Chao,LIANG Yanfen,LIANG Tianquan,MAN Quanyan,LUO Yidong,ZHANG Xiuhai,ZENG Jianmin. Research Progress on Hot Corrosion of Rare Earth Oxides Co-doped ZrO2 Ceramic Coatings in Molten Na2SO4+NaVO3 Salts[J]. 中国腐蚀与防护学报, 2019, 39(4): 291-298.
[15] Lijia YU,Wenping LIANG,Hao LIN,Qiang MIAO,Biaozi HUANG,Shiyu CUI. Evaluation of Hot Corrosion Behavior of Laser As-remelted YSZ Thermal Barrier Coatings at 950 ℃[J]. 中国腐蚀与防护学报, 2019, 39(1): 77-82.
No Suggested Reading articles found!